scholarly journals The Characterization of Thermoelectric Generator in Utilizing the Heat Waste of the Biomass Egg Drying Machine

2020 ◽  
Vol 3 (1) ◽  
pp. 30-33
Author(s):  
Sudarmanto Jayanegara ◽  
Zuryati Djafar ◽  
Zulkifli Djafar ◽  
Nasaruddin Azis ◽  
Wahyu Haryadi Piarah

This research was conducted to determine the character of the TEG module as a source of electrical energy in utilizing heat in the chimney wall of an egg rack drying machine that uses rice husk as engine furnace fuel. The test is carried out by utilizing heat on 2 pieces of chimney (upper chimney and lower chimney) separated by a Heat Exchanger (HE) with a furnace blower speed of 2600 rpm and environmental blower speed of 2800 rpm with the amount of thermoelectric used as many as 44 units. The results show that the TEG module in the upper chimney obtained temperature difference (∆T), voltage difference (∆V) and power (P) respectively ∆T 38.75 ° C; ∆V 3.68 Volts; P 0.796 Watt and for the lower chimney respectively ∆T 73.25 ° C; ∆V 12.26 Volts; P 2.446 Watt.

2012 ◽  
Vol 430-432 ◽  
pp. 1428-1432
Author(s):  
Rui Quan ◽  
Xin Feng Tang ◽  
Shu Hai Quan ◽  
Ji Guang Wang

The output performance of Automobile Exhaust Thermoelectric Generator (AETEG) is related to the temperature difference and electric connection topology of thermoelectric modules, in order to decrease the ring current among the thermoelectric modules in parallel with different temperature difference and enhance the output performance, a novel heat exchanger using in AETEG is designed in this paper. The interior structure of heat exchanger with fishbone is analysed, then its surface temperature distribution is simulated with ANSYS software and experimented with thermal imaging instrument. Both of the results show that the surface temperature distribution of the fishbone heat exchanger designed in this paper is more uniform in lateral direction and dispalys an obvious gradient in fore-and-aft surface, compared with the one of cavity designed before, the novel heat exchanger has overwhelming advantage in the output performance of AETEG, and the method adopted in this paper is feasible and practical.


2021 ◽  
Vol 6 (1) ◽  
pp. 60-65
Author(s):  
Rifky Rifky ◽  
Agus Fikri ◽  
Mohammad Mujirudin

AbstrakSalah satu pemanfaatan energi surya adalah mengkonversi energi termalnya menjadi energi listrik. Konvertor yang digunakan adalah generator termoelektrik. Panas matahari diterima sisi panas termoelektrik melalui penyerap panas, sedangkan sisi dinginnya dilekatkan sistem pendingin aktif dengan fluida air. Penelitian ini memiliki tujuan untuk mendapatkan daya luaran semaksimal mungkin dari sistem generator termoelektrik yang mengkonversi energi termal surya menjadi energi listrik pada model bangunan. Metode penelitian yang digunakan adalah eksperimental, yang didahului dengan perancangan dan pembuatan alat penelitian. Alat penelitian berbentuk sistem generator yang diletakkan di atap model bangunan. Sistem generator terdiri dari penyerap panas aluminium, termoelektrik yang terdiri dari 15 set, dan sistem pendingin yang menggunakan fluida air bersirkulasi. Pengujian terhadap sistem dengan cara mengoperasikannya sambil melakukan pengamatan dan pengambilan data. Variabel dalam penelitian ini adalah susunan sambungan generator termoelektrik (seri dan paralel). Sementara data masukan adalah kelembaban udara, kecepatan angin, temperatur, dan aliran alir; sedangkan data luaran adalah tegangan listrik dan arus listrik. Hasil penelitian mendapatkan bahwa dengan perbedaan temperatur 12,8oC menghasilkan daya maksimum sebesar 2,214 watt dari susunan seri sambungan termolektrik. Sementara dengan perbedaan temperatur 15,4oC mendapatkan daya maksimum sebesar 0.101 watt dari susunan paralel sambungan termoelektrik.  Kata kunci: energi, surya, termoelektrik, atap, daya AbstractOne of the uses of solar energy is converting its thermal energy into electrical energy. The converter used is a thermoelectric generator. The sun's heat is received by the thermoelectric hot side through the heat sink, while the cold side is attached by an active cooling system with water fluid. This study aims to obtain the maximum possible output power from a thermoelectric generator system that converts solar thermal energy into electrical energy in the building model. The research method used is experimental, which is preceded by the design and manufacture of research tools. The research tool is in the form of a generator system that is placed on the roof of the building model. The generator system consists of an aluminum heat sink, a thermoelectric consisting of 15 sets, and a cooling system that uses circulating water fluid. Testing the system by operating it while observing and collecting data. The variable in this research is the connection arrangement of the thermoelectric generator (series and parallel). While the input data are humidity, wind speed, temperature, and flow flow; while the output data is electric voltage and electric current. The results showed that with a temperature difference of 12.8°C the maximum power was 2,214 watts from the series arrangement of the thermoelectric junction. Meanwhile, with a temperature difference of 15.4°C, the maximum power is 0.101 watts from the parallel arrangement of the thermoelectric connection. Keywords: energy, solar, thermoelectric, roof, power


2021 ◽  
Vol 6 (2) ◽  
Author(s):  
Jay Patel ◽  
Manmohan Singh

As the world is changing and developing with every passing day, the requirements of power are also increasing. There is a shift in utilizing the electrical energy as much as possible and for this reason, many countries have already made policies for completely ruling out the machines which don’t run on electricity. Apart from electricity, there are other forms of energy that can be used to convert that form into a more desirable form. For example, in a plant where the smoke comes out of the chimneys or in a car, the smoke carries a large amount of thermal energy with it. This energy is nothing but a waste and reduction in the efficiency of the systems. If somehow, this energy could be recovered, the efficiency can be increased. Thermoelectric generators serve for this purpose. Thermos electric generators get the heat and using the principle of heat conduction and p and n type materials, the heat can be directly converted into the electricity. There are many materials available in the market for p and n type but in our case, we chose silicon germanium which is also one of the most commonly used. First of all, a single module of thermoelectric generator will be made using p and n type material, as well as using conductive material and some ceramic substance. Then, the entire assembly will be made and this assembly will be exported to Ansys where custom materials will be added and applied on to the geometry. After performing analysis on full model, a comparative study will be presented in which the effect of material of conductive plate on to the voltage difference will be studied


Author(s):  
Syed Zainal Abidin Syed Kamarul Bahrin ◽  
Sabarina Jaafar

<a name="OLE_LINK28"></a><a name="OLE_LINK27"></a><span>Electrical energy is important in various developments to ensure global stability. However, most electrical energy sources are non-renewable and these sources are expected to be depleted in the near future. In order to solve this problem, research on renewable energy sources are intensified and thermoelectric generator (TEG) is one of the potential solutions. TEG can generate electricity if the there is a temperature difference between the hot end and cold end of its plate and it is widely used in various applications, ranging from high temperature of a steam generator until to the lowest temperature of a human body. The initial development of this work focuses on the electrical power generator design by using focal lens to focus sunlight, a form of renewable energy, on the TEG hot end and also underground heat dissipation system on the cold end to create temperature difference. The initial results showed that the amount of power produced by the system is quite small but reasonable due to the type of TEGs used. However, the heat dissipation system showed a promising development due to its non-dependency on external energy to expel heat from the cold side</span><span>.</span>


2018 ◽  
Vol 1 (2) ◽  
pp. 51-58
Author(s):  
Usman Syamsuddin ◽  
Zulkifli Djafar ◽  
Thomas Tjandinegara ◽  
Zuryati Djafar ◽  
Wahyu Haryadi Piarah

The thermoelectric generator (TEG) has long been used to produce electrical energy where when a temperature difference occurs between two different semiconductor materials, this thermoelectric element will produce a voltage difference and flow an electric current. This principle is known as the 'Seebeck effect'. This research was conducted to determine the electrical energy potential of the TEG module as an alternative energy source by utilizing chimney heat from an incinerator. The test was carried out with a variation of 1, 2 and 3 m chimney height with treatment without compaction and compaction of waste. The test results show that with 12 TEG modules arranged in series electricity can produce an output voltage with a maximum temperature difference of each  ΔV 3,31  Volt ; ΔT 15,0 °C (1 m), ΔV 3,92 Volt; ΔT 17,8 °C (2 m),  ΔV 4,84 Volt ; ΔT 22,0 °C (3 m) while the compaction of each value ΔV 6,34  Volt ; ΔT 29,2 °C (1 m), ΔV 7,69 Volt ; ΔT 35,2 °C (2 m),  ΔV 9,09 Volt ; ΔT 41,5 °C (3 m). The potential power that can be produced is as big as 3,22 W (1 m); 4,56 W (2 m); 6,88 W (3 m) while the compaction of waste is equal to each value 11,80 W (1 m); 17,36 W (2 m); 24,25 W (3 m). The addition of chimney height variation resulted in an increase in the hot side temperature (Th), cold side (Tc) and temperature difference (dT) so that heat energy and power energy increased.


2014 ◽  
Vol 986-987 ◽  
pp. 848-851
Author(s):  
Xin Yu Wang ◽  
Shun Min Wang ◽  
Liang Zhou ◽  
Xi Chao Li

The HE (heat exchanger) of automotive exhaust TEG (thermoelectric generator) plays a vital role in converting thermal energy into electrical energy, therefore achieves the goal of energy conservation and emission reduction. A new regular-octagon HE is modeled and simulated in FLUENT to obtain the velocity path-lines of fluid. Through simulation results, the velocity path-line is tracked and analyzed, in order to evaluate the fluid resistance and fluid turbulence intensity. By using control variable method, a variety of HE models with different structural parameters are modeled and simulated, to optimize the structure of HE. Eventually, it is intended to design a HE with proper fluid resistance and remarkable turbulence intensity.


2021 ◽  
Vol 1034 (1) ◽  
pp. 012045
Author(s):  
Herry Irawansyah ◽  
Abdul Ghofur ◽  
Rachmat Subagyo ◽  
Mastiadi Tamjidillah ◽  
Bagus Harits Pratama ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document