scholarly journals Evaluation of Medium Speed Diesel generator sets and energy storage technologies as alternatives for reducing fuel consumption and exhaust emissions in electric propulsion systems for PSVs

2016 ◽  
Vol 9 (18) ◽  
pp. 49 ◽  
Author(s):  
Cristian A. Morales Vásquez

The use of electric propulsion systems in PSVs in Brazil has recently increased, leading to be the standard for most support vessels. In those ships, the common arrangement uses high speed Diesel generator sets for power generation and induction motors driving propellers, reporting significant reductions in the fuel consumption and exhaust emissions compared with mechanically propelled PSVs. However, further abatements in these parameters could be achieved by implementing other technologies for power production. In this work, the use of medium- speed Diesel generator sets and energy storage technologies in electrically propelled PSVs is evaluated. For the above, the fuel consumption, exhaust emissions, mass, volume and acquisition costs of four arrangements are estimated and compared. Two of the arrangements are equipped with medium-speed Diesel generator sets, two with energy storage units and one with high-speed Diesel generator sets. Energy storage appears as interesting alternative for decreasing fuel consumption and emissions by optimal loading of Diesel engines. Medium speed generators also showed reductions in fuel consumption, but highest emissions. The arrangements with high-speed generators presented the lowest mass, volume and acquisition costs. 

Atmosphere ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 64 ◽  
Author(s):  
Chao Ma ◽  
Lin Wu ◽  
Hong-jun Mao ◽  
Xiao-zhen Fang ◽  
Ning Wei ◽  
...  

Previous works on real-world vehicle emission characteristics have mainly focused on the influences of fuel, speed, vehicle type, elevation, and other factors on vehicle emission quantity and components. However, few studies have investigated the transient trend of automotive exhaust emissions through on-road measurements. The key objective of the present paper was to examine the transient characteristics of exhaust emissions from different vehicle types on the roads of Tianjin. To achieve the goal, a portable emission measurement system (PEMS) was employed to monitor emissions from selected test vehicles—private cars, passenger vehicles, and cargo vehicles. It was found that the high-emission points of test vehicles were mainly distributed in two regions: the high-speed region (speed > 70–90 km/h, vehicle-specific power (VSP) > 0 kW/t) and the medium-speed–acceleration region (20–30 km/h < speed < 60–90 km/h, 0 kW/t <VSP < 12 kW/t). The CO, hydrocarbon (HC), NOx, and particulate number (PN) average emission rates in the high-emission points could be 3.15–14.93 times, 1.93–24.89 times, 3.23–6.03 times, and 3.22–30.27 times of those of average emission rates. The HC, NOx, and PN average emission rates of China IV vehicles in the high-emission points were 2.46–4.92 times, 3.56–6.03 times, and 3.22–13.21 times of those of average emission rates, not less than those of China III (1.93–2.52 times, 2.75–3.90 times, and 9.98–22.34 times). Test vehicles mainly emitted nucleation-mode and Aitken-mode particles, and the increase of the PN concentration emission rate in low-speed and high-speed regions was higher than that in the medium-speed region. The exhaust gas recirculation (EGR) + diesel particulate filter (DPF) could effectively inhibit the Aitken output caused by turbocharged intercooler (CIC). The selective catalytic reduction (SCR) might cause more nucleation-mode particles.


2021 ◽  
Vol 899 (1) ◽  
pp. 012005
Author(s):  
Achilleas Grigoriadis ◽  
Sokratis Mamarikas ◽  
Leonidas Ntziachristos

Abstract The maritime sector significantly contributes on the major environmental problems that humanity is being confronted with their consequences. The Greenhouse Gases (GHGs) emitted from the sector, which are responsible for the global phenomenon of climate change, are estimated in 2,89% of total anthropogenic GHGs. Ships are also an important source of local air-quality degradation in coastal areas by emitting major quantities of pollutants such as Nitrogen Oxides (NOx), Sulphur Oxides (SOx) and Particulate Matter (PM). The overall emitted quantities of the sector seem not to be equally allocated to the major ship classes (containers, dry and liquid bulk carriers, cruise ships, ro-ro ships etc.), even though the engine technologies that are being used in these classes are approximately the same (slow speed, medium speed, high speed diesel engines). A factor of differentiation among the ship types is the activity profile. Depending on the ship type, engines (main, auxiliary, boilers) present different power needs and therefore are being operated at different load points which among others are related with the sailing profile (cruising, maneuvering, hoteling), the cargo type and weight conditions (laden, ballast). In this context the target of the present paper is to evaluate the emission performance of the major ship classes. This evaluation is performed by using a new set of engine load-dependent Emission Factors for ships, which have been derived by a statistical analysis of emission rates found in literature, in combination with average activity profiles per ship type as these are found in dedicated shipping inventory databases and in literature. These activity data concern a global scale of consideration. Results aim to highlight the differences and similarities in the emission performance of ship types, enhancing the understanding of policy makers and ship operators, on the principle of tackling pollutants especially at ports, close to cities.


Author(s):  
Randell L. Honc ◽  
Steven G. Fritz ◽  
Dustin T. Osborne ◽  
Richard Grisier ◽  
Scott Carpenter

Conventional switcher or shunting locomotives in North America are powered by a single 12 or 16 cylinder engine which operate at eight distinct power levels, plus idle. Recently introduced locomotive power systems utilize multiple smaller displacement non-road diesel engines packaged as individual generator sets to obtain a cleaner and more efficient locomotive. This paper examines exhaust emissions and fuel consumption of a Railpower RP20BD switcher locomotive utilizing three 375 kWe generators. FTP tests, described in part 92 of the CFR Title 40, were completed for UPY2606 using two fuels: EPA certification diesel, and ultra-low sulfur diesel. The locomotive produced emissions well below EPA Tier 2 limits using certification fuel, and subsequent testing with ULSD further reduced emissions to below the future EPA Tier 2 and 3 limits.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Yingying Wu ◽  
Peng Zhao ◽  
Hongwei Zhang ◽  
Yuan Wang ◽  
Guozhu Mao

In the recent years, China’s auto industry develops rapidly, thus bringing a series of burdens to society and environment. This paper uses Logistic model to simulate the future trend of China’s vehicle population and finds that China’s auto industry would come into high speed development time during 2020–2050. Moreover, this paper predicts vehicles’ fuel consumption and exhaust emissions (CO, HC, NOx, and PM) and quantificationally evaluates related industry policies. It can be concluded that (1) by 2020, China should develop at least 47 million medium/heavy hybrid cars to prevent the growth of vehicle fuel consumption; (2) China should take the more stringent vehicle emission standard V over 2017–2021 to hold back the growth of exhaust emissions; (3) developing new energy vehicles is the most effective measure to ease the pressure brought by auto industry.


Author(s):  
Randell L. Honc ◽  
Steven G. Fritz ◽  
Michael B. Schell ◽  
Andrew Tarnow ◽  
Adam Bennett

Conventional switcher or shunting locomotives in North America are powered by a single Electro-Motive Diesel (EMD) 12 or 16 cylinder 645E engine which operate at eight distinct power levels, plus idle, at engine speeds ranging from 250 to 900 rpm, and power ratings of 1125 to 1500 kW. The individual power (notch) settings are weighted according to an established duty cycle to obtain overall fuel consumption and exhaust emission rates. Recently introduced locomotive power systems utilize multiple smaller displacement non-road diesel engines packaged as individual generator sets to obtain a cleaner and more efficient locomotive. This paper compares exhaust emissions and fuel consumption from a conventional switcher locomotive with a single large displacement engine to that of a repowered locomotive utilizing three 345 kW generators.


2014 ◽  
Vol 14 (4) ◽  
pp. 1881-1896 ◽  
Author(s):  
G. M. Buffaloe ◽  
D. A. Lack ◽  
E. J. Williams ◽  
D. Coffman ◽  
K. L. Hayden ◽  
...  

Abstract. Black carbon (BC) mass emission factors (EFBC; g BC (kg fuel)−1) from a variety of ocean-going vessels have been determined from measurements of BC and carbon dioxide (CO2) concentrations in ship plumes intercepted by the R/V Atlantis during the 2010 California Nexus (CalNex) campaign. The ships encountered were all operating within 24 nautical miles of the California coast and were utilizing relatively low sulphur fuels (average fuel sulphur content of 0.4%, 0.09% and 0.03% for vessels operating slow-speed, medium-speed and high-speed diesel engines, respectively). Black carbon concentrations within the plumes, from which EFBC values are determined, were measured using four independent instruments: a photoacoustic spectrometer and a particle soot absorption photometer, which measure light absorption, and a single particle soot photometer and soot particle aerosol mass spectrometer, which measure the mass concentration of refractory BC directly. These measurements have been used to assess the level of agreement between these different techniques for the determination of BC emission factors from ship plumes. Also, these measurements greatly expand upon the number of individual ships for which BC emission factors have been determined during real-world operation. The measured EFBC's have been divided into vessel type categories and engine type categories, from which averages have been determined. The geometric average EFBC (excluding outliers) determined from over 71 vessels and 135 plumes encountered was 0.31 &amp;pm; 0.31 g BC (kg fuel)−1, where the standard deviation represents the variability between individual vessels. The most frequent engine type encountered was the slow-speed diesel (SSD), and the most frequent SSD vessel type was the cargo ship sub-category. Average and median EFBC values from the SSD category are compared with previous observations from the Texas Air Quality Study (TexAQS) in 2006, during which the ships encountered were predominately operating on high-sulphur fuels (average fuel sulphur content of 1.6%). There is a statistically significant difference between the EFBC values from CalNex and TexAQS for SSD vessels and for the cargo and tanker ship types within this engine category. The CalNex EFBC values are lower than those from TexAQS, suggesting that operation on lower sulphur fuels is associated with smaller EFBC values.


2018 ◽  
Vol 2 (1) ◽  
pp. 47-55
Author(s):  
Hari Boedi Wahjono ◽  
Fadli Rozaq

Locomotives use diesel engines as a source of driving force, so the fuel used for this locomotive is to use diesel fuel or diesel oil. The purpose of this study is to determine the differences in the use of Biosolar fuel and HSD on exhaust emissions. This research is a descriptive quantitative research that aims to test the hypotheses of the data that have been collected in accordance with previous theories and concepts. Data collection method is by testing diesel engine vehicles and gas analyzers to measure opacity. Data analysis methods used are: descriptive analysis and T-test. The results showed that there were no statistically significant differences in the use of Biosolar fuel and HSD on exhaust emissions.


Sign in / Sign up

Export Citation Format

Share Document