scholarly journals Indikator Proses Utama pada Proses Grinding dengan Pendekatan Manajemen Pengetahuan

2016 ◽  
Vol 13 (2) ◽  
pp. 743
Author(s):  
Ikhwan Arief ◽  
Alfajri Nalda

This study discusses aboutkey process indicators in grinding with the knowledge management approach. Common/key indicators used in the machine are workpiece, grinding wheel, dressing tool and coolant. The resulting key processeswill benefit firms and their operators especially new ones in managing scienceson grinding process that will allow knowledge transferred to new operators quickly. Process indicators are described with IDEF0 diagrams which will define the inputs, outputs, mechanisms and controls.Keywords: Knowledge Management, Grinding, IDEF0AbstrakPenelitian ini membahas tentang indikator proses utama pada proses grinding/gerinda dengan pendekatan manajemen pengetahuan. Indikator umum yang dipakai yaitu mesin, benda kerja, grinding wheel, dressing tool dan coolant. Hasil ini akan bermanfaat untuk membantu perusahaan dalam mengelola ilmu pengetahuan pada proses grinding sehingga akan memudahkan pewarisan ilmu pengetahuan kepada operator baru dari operator senior. Indikator proses digambarkan dengan IDEF0 yang memperlihatkan masukan, luaran, mekanisme dan kontrol pada proses.Kata kunci: Manajemen Pengetahuan, Grinding, IDEF0

2016 ◽  
Vol 1136 ◽  
pp. 90-96 ◽  
Author(s):  
Ali Zahedi ◽  
Bahman Azarhoushang ◽  
Javad Akbari

Laser-dressing has been shown to be a promising method for overcoming some shortcomings of the conventional methods such as high wear of the dressing tool and its environmental concerns, high induced damage to the grinding wheel, low form flexibility and low speed. In this study, a resin bonded cBN grinding wheel has been dressed with a picosecond Yb:YAG laser. The efficiency of the laser-dressed grinding wheels has been compared with the conventionally dressed and sharpened grinding wheels through execution of cylindrical grinding tests on a steel workpiece (100Cr6). The conventional dressing and sharpening processes have been performed by using a vitrified SiC wheel and vitrified alumina blocks, respectively. By recording the spindle power values along with the surface topography measurements of the ground workpieces and the extraction of two roughness parameters (the average roughness Ra and the average roughness depth Rz), it is possible to provide an assessment of the cylindrical grinding process with different dressing conditions i.e. laser-dressing and conventional dressing. Accordingly, a strategy will be proposed to optimize the cylindrical grinding process with laser-dressed wheels regarding the forces and roughness values.


2014 ◽  
Vol 670-671 ◽  
pp. 526-528
Author(s):  
Li Hua ◽  
Xiang Jun Wang ◽  
Rui Zhou

Mirror grinding mainly depends on the precision of the machine tool, cutting and grinding amount and wheel selection and dressing. This paper mainly studies the MG1432 high-precision universal cylindrical grinder, exploring the impact on the workpiece roughness through selection and design of various process parameters in grinding, such as changing work table speed in dressing the grinding wheel and grinding, workpiece linear velocity and excessive feeding. The experimental conditions were: Using resin binder white corundum graphite grinding wheels, workpiece: GCr15 (HRC60); dressing tool: sharp single particle diamond correction pen, and ultimately achieving mirror grinding process results.


2009 ◽  
Vol 407-408 ◽  
pp. 577-581
Author(s):  
Shi Chao Xiu ◽  
Zhi Jie Geng ◽  
Guang Qi Cai

During cylindrical grinding process, the geometric configuration and size of the edge contact area between the grinding wheel and workpiece have the heavy effects on the workpiece surface integrity. In consideration of the differences between the point grinding and the conventional high speed cylindrical grinding, the geometric and mathematic models of the edge contact area in point grinding were established. Based on the models, the numerical simulation for the edge contact area was performed. By means of the point grinding experiment, the effect mechanism of the edge contact area on the ground surface integrity was investigated. These will offer the applied theoretic foundations for optimizing the point grinding angles, depth of cut, wheel and workpiece speed, geometrical configuration and size of CBN wheel and some other grinding parameters in point grinding process.


2021 ◽  
Vol 11 (9) ◽  
pp. 4128
Author(s):  
Peng-Zhan Liu ◽  
Wen-Jun Zou ◽  
Jin Peng ◽  
Xu-Dong Song ◽  
Fu-Ren Xiao

Passive grinding is a new rail grinding strategy. In this work, the influence of grinding pressure on the removal behaviors of rail material in passive grinding was investigated by using a self-designed passive grinding simulator. Meanwhile, the surface morphology of the rail and grinding wheel were observed, and the grinding force and temperature were measured during the experiment. Results show that the increase of grinding pressure leads to the rise of rail removal rate, i.e., grinding efficiency, surface roughness, residual stress, grinding force and grinding temperature. Inversely, the enhancement of grinding pressure and grinding force will reduce the grinding ratio, which indicates that service life of grinding wheel decreases. The debris presents dissimilar morphology under different grinding pressure, which reflects the distinction in grinding process. Therefore, for rail passive grinding, the appropriate grinding pressure should be selected to balance the grinding quality and the use of grinding wheel.


2011 ◽  
Vol 496 ◽  
pp. 7-12 ◽  
Author(s):  
Takazo Yamada ◽  
Michael N. Morgan ◽  
Hwa Soo Lee ◽  
Kohichi Miura

In order to obtain the effective depth of cut on the ground surface, a new grinding process model taking into account thermal expansions of the grinding wheel and the workpiece, elastic deformations of the grinding machine, the grinding wheel and the workpiece and the wheel wear was proposed. Using proposed model, the effective depth of cut was calculated using measured results of the applied depth of cut and the normal grinding force.


2013 ◽  
Vol 652-654 ◽  
pp. 2153-2158
Author(s):  
Wu Ji Jiang ◽  
Jing Wei

Controlling the tooth errors induced by the variation of diameter of grinding wheel is the key problem in the process of ZC1 worm grinding. In this paper, the influence of tooth errors by d1, m and z1 as the grinding wheel diameter changes are analyzed based on the mathematical model of the grinding process. A new mathematical model and truing principle for the grinding wheel of ZC1 worm is presented. The shape grinding wheel truing of ZC1 worm is carried out according to the model. The validity and feasibility of the mathematical model is proved by case studies. The mathematical model presented in this paper provides a new method for reducing the tooth errors of ZC1 worm and it can meet the high-performance and high-precision requirements of ZC1 worm grinding.


2016 ◽  
Vol 106 (01-02) ◽  
pp. 44-50
Author(s):  
T. Lierse ◽  
B. Karpuschewski ◽  
T. R. Kaul

Dieser Beitrag zeigt, dass die durch die Abrichtparameter erzeugte Schleifscheibentopographie nicht nur die Oberflächengüte des Werkstücks, sondern auch dessen Eigenspannungszustand in der Werkstückrandzone in weiten Grenzen verändert. Die Untersuchungen zum Abrichten von Korundschleifscheiben mit einer CVD-Diamantformrolle stellen den Zusammenhang zwischen dem Abrichten unterschiedlicher Schleifscheiben zur Bauteilqualität in Form der Oberflächenrautiefe und randzonennahen Eigenspannungen her.   The quality of the workpiece rim is changed by every grinding process. The grinding wheel topography created by the dressing process has not only influence on the workpiece roughness but also on the surface integrity. The pointed research using aluminum oxide abrasive wheels dressed by CVD diamond dressing discs shows a correlation between the dressing parameters, the workpiece roughness and the surface integrity.


Sign in / Sign up

Export Citation Format

Share Document