scholarly journals Scopariaine A: A New Alkaloid from Scoparia dulcis with Protective effect on Cardiomyocytes Injury in Vitro

2021 ◽  
pp. 1-5
Author(s):  
Zhang Xiaopo ◽  
Lei Yang ◽  
Chenpeng Liu ◽  
Peng Wang ◽  
Sun Wanying
1984 ◽  
Vol 51 (01) ◽  
pp. 089-092 ◽  
Author(s):  
M A Boogaerts ◽  
J Van de Broeck ◽  
H Deckmyn ◽  
C Roelant ◽  
J Vermylen ◽  
...  

SummaryThe effect of alfa-tocopherol on the cell-cell interactions at the vessel wall were studied, using an in vitro model of human umbilical vein endothelial cell cultures (HUEC). Immune triggered granulocytes (PMN) will adhere to and damage HUEC and platelets enhance this PMN mediated endothelial injury. When HUEC are cultured in the presence of vitamin E, 51Cr-leakage induced by complement stimulated PMN is significantly decreased and the enhanced cytotoxicity by platelets is completely abolished (p <0.001).The inhibition of PMN induced endothelial injury is directly correlated to a diminished adherence of PMN to vitamin E- cultured HUEC (p <0.001), which may be mediated by an increase of both basal and stimulated endogenous prostacyclin (PGI2) from alfa-tocopherol-treated HUEC (p <0.025). The vitamin E-effect is abolished by incubation of HUEC with the irreversible cyclo-oxygenase inhibitor, acetylsalicylic acid, but the addition of exogenous PGI2 could not reproduce the vitamin E-mediated effects.We conclude that vitamin E exerts a protective effect on immune triggered endothelial damage, partly by increasing the endogenous anti-oxidant potential, partly by modulating intrinsic endothelial prostaglandin production. The failure to reproduce vitamin E-protection by exogenously added PGI2 may suggest additional, not yet elucidated vitamin E-effects on endothelial metabolism.


2020 ◽  
Author(s):  
K. Zerrouki ◽  
N. Djebli ◽  
L. Gadouche ◽  
I. Erdogan Orhan ◽  
F. SezerSenol Deniz ◽  
...  

Nowadays, because of the industrialization, a lot of contaminant were available ; the consequences of this availability are apparition of diseases including neurodegeneration. Neurodegenerative diseases of the human brain comprise a variety of disorders that affect an increasing percentage of the population. This study is based on the effect of the Boswellic resin, which is from a medicinal plant and known for its antioxidant effects on nerve cell damage. The objective of this work was to evaluate the in vitro and in vivo effects of the Boswellic resin on anticholinesterase activity and Alzheimer’s disease (AD) induced by D-galactose and aluminum tetrachloride in Swiss mice. Chemical composition of the resin essential oil was identified by the CG-MS analysis. The antioxidant activity was also assessed by the DMPD and metal chelation methods. In order to understand the mechanism of memory improvement, the acetylcholinesterase, AChE, and butyrylcholinesterase, BChE, inhibitory assays were performed. In vivo part of the study was achieved on Swiss mice divided into four groups: control, AD model, treated AD, and treated control group. The identification of chemical composition by CG-MS reach the 89.67% of the total extract compounds presented some very important molecules (p-Cymene, n-Octyl acetate, α-Pinene…). The present study proves that Boswellic resin improves memory and learning in treated Alzheimer’s group, modulates the oxidative stress and be involved in the protective effect against amyloid deposition and neurodegeneration, and stimulates the immune system in mice’s brain.


Author(s):  
Suong N.T. Ngo ◽  
Desmond B. Williams

Background: The effect of cruciferous vegetable intake on breast cancer survival is controversial at present. Glucosinolates are the naturally occurring constituents found across the cruciferous vegetables. Isothiocyanates are produced from the hydrolysis of glucosinolates and this reaction is catalysed by the plant-derived enzyme myrosinase. The main isothiocyanates (ITCs) from cruciferous vegetables are sulforaphane, benzyl ITC, and phenethyl ITC, which had been intensively investigated over the last decade for their antibreast cancer effects. Objective: The aim of this article is to systematically review the evidence from all types of studies, which examined the protective effect of cruciferous vegetables and/or their isothiocyanate constituents on breast cancer. Methods: A systematic review was conducted in Pubmed, EMBASE, and the Cochrane Library from inception to 27 April 2020. Peerreviewed studies of all types (in vitro studies, animal studies, and human studies) were selected. Results: The systematic literature search identified 16 human studies, 4 animal studies, and 65 in vitro studies. The effect of cruciferous vegetables and/or their ITCs intake on breast cancer survival was found to be controversial and varied greatly across human studies. Most of these trials were observational studies conducted in specific regions, mainly in the US and China. Substantial evidence from in vitro and animal studies was obtained, which strongly supported the protective effect of sulforaphane and other ITCs against breast cancer. Evidence from in vitro studies showed sulforaphane and other ITCs reduced cancer cell viability and proliferation via multiple mechanisms and pathways. Isothiocyanates inhibited cell cycle, angiogenesis and epithelial mesenchymal transition, as well as induced apoptosis and altered the expression of phase II carcinogen detoxifying enzymes. These are the essential pathways which promote the growth and metastasis of breast cancer. Noticeably, benzyl ITC showed a significant inhibitory effect on breast cancer stem cells, a new dimension of chemoresistance in breast cancer treatment. Sulforaphane and other ITCs displayed anti-breast cancer effects at variable range of concentrations and benzyl isothiocyanate appeared to have a relatively smallest inhibitory concentration IC50. The mechanisms underlying the cancer protective effect of sulforaphane and other ITCs have also been highlighted in this article. Conclusion: Current preclinical evidence strongly supports the role of sulforaphane and other ITCs as potential therapeutic agents for breast cancer, either as adjunct therapy or combined therapy with current anti-breast cancer drugs, with sulforaphane appeared to display the greatest potential.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Beatriz Martines de Souza ◽  
Mayara Souza Silva ◽  
Aline Silva Braga ◽  
Patrícia Sanches Kerges Bueno ◽  
Paulo Sergio da Silva Santos ◽  
...  

AbstractThis in vitro study evaluated the protective effect of titanium tetrafluoride (TiF4) varnish and silver diamine fluoride (SDF) solution on the radiation-induced dentin caries. Bovine root dentin samples were irradiated (70 Gy) and treated as follows: (6 h): 4% TiF4 varnish; 5.42% NaF varnish; 30% SDF solution; placebo varnish; or untreated (negative control). Microcosm biofilm was produced from human dental biofilm (from patients with head-neck cancer) mixed with McBain saliva for the first 8 h. After 16 h and from day 2 to day 5, McBain saliva (0.2% sucrose) was replaced daily (37 °C, 5% CO2) (biological triplicate). Demineralization was quantified by transverse microradiography (TMR), while biofilm was analyzed by using viability, colony-forming units (CFU) counting and lactic acid production assays. The data were statistically analyzed by ANOVA (p < 0.05). TiF4 and SDF were able to reduce mineral loss compared to placebo and the negative control. TiF4 and SDF significantly reduced the biofilm viability compared to negative control. TiF4 significantly reduced the CFU count of total microorganism, while only SDF affected total streptococci and mutans streptococci counts. The varnishes induced a reduction in lactic acid production compared to the negative control. TiF4 and SDF may be good alternatives to control the development of radiation-induced dentin caries.


Biomarkers ◽  
2021 ◽  
pp. 1-9
Author(s):  
Habiba Bouchab ◽  
Abbas Ishaq ◽  
Riad EL Kebbaj ◽  
Boubker Nasser ◽  
Gabriele Saretzki

2021 ◽  
Vol 49 (2) ◽  
pp. 030006052098635
Author(s):  
Qi Gao ◽  
Ningqing Chang ◽  
Donglian Liu

Objectives To investigate the mechanisms underlying the protective effect of sufentanil against acute lung injury (ALI). Material and Methods Rats were administered lipopolysaccharide (LPS) by endotracheal instillation to establish a model of ALI. LPS was used to stimulate BEAS-2B cells. The targets and promoter activities of IκB were assessed using a luciferase reporter assay. Apoptosis of BEAS-2B cells was evaluated by terminal deoxynucleotidyl transferase dUTP nick end labeling. Results Sufentanil treatment markedly reduced pathological changes in lung tissue, pulmonary edema and secretion of inflammatory factors associated with ALI in vivo and in vitro. In addition, sufentanil suppressed apoptosis induced by LPS and activated NF-κB both in vivo and in vitro. Furthermore, upregulation of high mobility group box protein 1 (HMGB1) protein levels and downregulation of miR-129-5p levels were observed in vivo and in vitro following sufentanil treatment. miR-129-5p targeted the 3ʹ untranslated region and its inhibition decreased promoter activities of IκB-α. miR-129-5p inhibition significantly weakened the protective effect of sufentanil on LPS-treated BEAS-2B cells. Conclusion Sufentanil regulated the miR-129-5p/HMGB1 axis to enhance IκB-α expression, suggesting that sufentanil represents a candidate drug for ALI protection and providing avenues for clinical treatment.


2021 ◽  
Vol 12 (2) ◽  
Author(s):  
Zhiya Deng ◽  
Maomao Sun ◽  
Jie Wu ◽  
Haihong Fang ◽  
Shumin Cai ◽  
...  

AbstractOur previous studies showed that silent mating-type information regulation 2 homologue-1 (SIRT1, a deacetylase) upregulation could attenuate sepsis-induced acute kidney injury (SAKI). Upregulated SIRT1 can deacetylate certain autophagy-related proteins (Beclin1, Atg5, Atg7 and LC3) in vitro. However, it remains unclear whether the beneficial effect of SIRT1 is related to autophagy induction and the underlying mechanism of this effect is also unknown. In the present study, caecal ligation and puncture (CLP)-induced mice, and an LPS-challenged HK-2 cell line were established to mimic a SAKI animal model and a SAKI cell model, respectively. Our results demonstrated that SIRT1 activation promoted autophagy and attenuated SAKI. SIRT1 deacetylated only Beclin1 but not the other autophagy-related proteins in SAKI. SIRT1-induced autophagy and its protective effect against SAKI were mediated by the deacetylation of Beclin1 at K430 and K437. Moreover, two SIRT1 activators, resveratrol and polydatin, attenuated SAKI in CLP-induced septic mice. Our study was the first to demonstrate the important role of SIRT1-induced Beclin1 deacetylation in autophagy and its protective effect against SAKI. These findings suggest that pharmacologic induction of autophagy via SIRT1-mediated Beclin1 deacetylation may be a promising therapeutic approach for future SAKI treatment.


Sign in / Sign up

Export Citation Format

Share Document