scholarly journals An Efficient Technique for Automation of The NFT (Nutrient Film Technique) Hydroponic System Using Arduino

Author(s):  
Vicky Wibisono ◽  
Yudi Kristyawan

Hydroponic Nutrient Film Technique (NFT) is most widely applied on a home and industrial scale. One of the drawbacks of the NFT hydroponic system is that it is very dependent on electricity for 24 hours to power the water pump. The basic principle of the NFT hydroponic system is to flow nutrients to plant roots with a shallow and circulating nutrient layer so that plants get enough water, nutrients, and oxygen.  Therefore, the role of the water pump in the hydroponic NFT system is crucial. This research makes the automation of the NFT hydroponic system more efficient using Arduino.    There are two main parts to this automation system: the control of pH levels and nutrient distribution.  The pH sensor is used to control the pH level of nutrients, and the ultrasonic sensor is used for nutrient distribution. Efficiency is emphasized more on the distribution of nutrients because it absorbs more electrical energy. The method used is to flow the nutrients in the reservoir to a storage tank that is located higher than the plant using a water pump with a large discharge. Nutrients are transported to each plant using the force of gravity.  The nutrient volume is controlled automatically using an ultrasonic sensor in the storage tank. The water pump is only activated by the ultrasonic sensor readings on the storage tank. So that the need for electricity to turn on the water pump is reduced, based on tests carried out on the use of a 220-volt AC / 50 Hz / 125-watt water pump and the use of a 250-liter nutrient storage tank, it can be concluded that the system that has been created can save 70% of electricity consumption.

JOURNAL ASRO ◽  
2019 ◽  
Vol 10 (3) ◽  
pp. 138
Author(s):  
Sutrisno Sutrisno ◽  
Wawan Kusdiana ◽  
Amri Rahmatullah ◽  
Bagiyo Herwono

The use of electricity in offices has been considered too wasteful. This is caused by human negligence in controlling their use. For this reason, this research was carried out as an effort to find the right method to reduce the high electricity consumption in offices. This research was conducted in the STTAL classroom, Bumimoro, Surabaya. From the results of the calculation, the total heat load in the classroom is 32,048.3 BTU or ± 4 PK. Total installed AC capacity is only 2 PK. This automation tool is a system that works automatically to regulate the use of electrical equipment based on parameters that have been determined in a program such as the presence or absence of humans, the level of light intensity and room temperature. Data collection is carried out for 6 days in the classroom, 3 days without tools and 3 days using the automation tool. Furthermore, the data is compared to the graph and the savings are calculated. The result, on day 1 is 56.11%, days 2 and 3 are 10.26% and the average savings for the 6-day trial is 33.43%. All data is recorded automatically on a micro sdcard and information about the amount of electricity consumption and the ON / OFF feature of electrical equipment can also be accessed via a smartphone with a wifi network so that users will find it easier to monitor the use of electrical equipment in the classroom.Keywords: electricity waste, heat load, automation system, electricity monitoring, electricity savings.


2020 ◽  
Vol 14 (1) ◽  
pp. 48-54
Author(s):  
D. Ostrenko ◽  

Emergency modes in electrical networks, arising for various reasons, lead to a break in the transmission of electrical energy on the way from the generating facility to the consumer. In most cases, such time breaks are unacceptable (the degree depends on the class of the consumer). Therefore, an effective solution is to both deal with the consequences, use emergency input of the reserve, and prevent these emergency situations by predicting events in the electric network. After analyzing the source [1], it was concluded that there are several methods for performing the forecast of emergency situations in electric networks. It can be: technical analysis, operational data processing (or online analytical processing), nonlinear regression methods. However, it is neural networks that have received the greatest application for solving these tasks. In this paper, we analyze existing neural networks used to predict processes in electrical systems, analyze the learning algorithm, and propose a new method for using neural networks to predict in electrical networks. Prognostication in electrical engineering plays a key role in shaping the balance of electricity in the grid, influencing the choice of mode parameters and estimated electrical loads. The balance of generation of electricity is the basis of technological stability of the energy system, its violation affects the quality of electricity (there are frequency and voltage jumps in the network), which reduces the efficiency of the equipment. Also, the correct forecast allows to ensure the optimal load distribution between the objects of the grid. According to the experience of [2], different methods are usually used for forecasting electricity consumption and building customer profiles, usually based on the analysis of the time dynamics of electricity consumption and its factors, the identification of statistical relationships between features and the construction of models.


2021 ◽  
Vol 29 (2) ◽  
pp. 359-383
Author(s):  
Anatoly P. Dzyuba

Reducing the cost of electricity consumption by industrial enterprises is the most important area of increasing the operational efficiency of their activities. The article is devoted to the issue of reducing the cost of paying for the service component of the transport component of purchased electrical energy from industrial enterprises that have technological connection to the electrical networks of electricity producers. The article makes an empirical study of the features of the pricing of payment for the services of the transport component of purchased electrical energy for industrial enterprises connected to the electric grids of electricity producers with the identification of factors influencing the overestimation of the cost of paid electricity, and calculating such overestimations using the example of a typical schedule of electricity consumption of a machinebuilding enterprise for various regions Russia. On the basis of the developed author's indicators (tariff coefficient for electricity transportation by the level of GNP, index of tariff coefficient for electricity transportation, weighted average price for electricity transportation, index of weighted average price for electricity transportation, integral index of efficiency of GNP tariffs) study of the effectiveness of the application of tariffs for the transport of electricity for industrial enterprises connected to the electric networks of electricity producers. Based on the calculated indicators, the article groups the regions into three main groups, with the development of recommendations for managing the cost of purchasing electricity by the component of the cost of the transport component of purchased electricity in each group. As the most optimal option for reducing the cost of electricity transportation, the author proposes the introduction of demand management for electricity consumption, which will reduce the costs of industrial enterprises that pay for the transport component of purchased electricity at unfavorable tariff configurations.


2018 ◽  
Vol 8 (4) ◽  
pp. 3168-3171
Author(s):  
F. Mavromatakis ◽  
G. Viskadouros ◽  
H. Haritaki ◽  
G. Xanthos

The latest measure for the development of photovoltaics in Greece utilizes the net-metering scheme. Under this scheme the energy produced by a PV system may be either consumed by the local loads or be injected to the grid. The final cost reported in an electricity bill depends upon the energy produced by the PV system, the energy absorbed from the grid and the energy injected to the grid. Consequently, the actual electricity consumption profile is important to estimate the benefit from the use of this renewable energy source. The state latest statistics in Greece for households reveal that the typical electrical consumption is 3750 kWh while 10244 kWh are consumed in the form of thermal energy. We adopt in our calculations the above amount of electrical energy but assume four different scenarios. These different hourly profiles are examined to study the effects of synchronization upon the final cost of energy. The above scenarios are applied to areas in different climate zones in Greece (Heraklion, Athens and Thessaloniki) to examine the dependence of the hourly profiles and the solar potential upon the financial data with respect to internal rate of return, payback times, net present value and the levelized cost of energy. These parameters are affected by the initial system cost and the financial parameters.


Author(s):  
Mohammad Omar Temori ◽  
František Vranay

In this work, a mini review of heat pumps is presented. The work is intended to introduce a technology that can be used to income energy from the natural environment and thus reduce electricity consumption for heating and cooling. A heat pump is a mechanical device that transfers heat from one environmental compartment to another, typically against a temperature gradient (i.e. from cool to hot). In order to do this, an energy input is required: this may be mechanical, electrical or thermal energy. In most modern heat pumps, electrical energy powers a compressor, which drives a compression - expansion cycle of refrigerant fluid between two heat exchanges: a cold evaporator and a warm condenser. The efficiency or coefficient of performance (COP), of a heat pump is defined as the thermal output divided by the primary energy (electricity) input. The COP decreases as the temperature difference between the cool heat source and the warm heat sink increases. An efficient ground source heat pump (GSHP) may achieve a COP of around 4. Heat pumps are ideal for exploiting low-temperature environmental heat sources: the air, surface waters or the ground. They can deliver significant environmental (CO2) and cost savings.


2020 ◽  
Vol 2 (1) ◽  
pp. 13-18
Author(s):  
Slamet Raharjo ◽  
Massus Subekti ◽  
Imam Arif Raharjo

This research aimed to find out the work method of flash stamp machine made in Tiongkok brand Flaz and flash stamp machine made in Indonesia brand MD observed from each machine performance including colour stamp quality resulted, duration in its operation, as well as power and electricity consumption. The research method adopted is qualitative method with grounded theory approach. This research conducted in Enterprise of Flash Stamp Machine made in Indonesia brand MD on Jl. Lembang Baru I West Sudimara, Ciledug, Tangerang, Banten. The result drawn from work method research of both flash stamp machine are: First,   the stamp quality resulted by flash stamp machine brand MD was better than flash stamp machine brand MD. Second, the operation time of flash stamp machine brand MD was 4 second faster, that is 3 second, while flash sta mp machine brand Flaz was 4 second. Third, the electricity power consumption of flash stamp machine brand Flaz was smaller that is 136,62 watt, while brand Flaz was 392,34 watt. Fourth, the electrical energy consumption of flash stamp machine Flaz was smaller that is 888,39 Joule, while flash stamp machine brand MD was 1709,06. The conclusion drawn from work method research of flash stamp machine made in Tiongkok brand Flaz toward flash stamp machine made in Indonesia brand MD measured from stamp output quality parameter and operation time speed, so flash stamp machine made in Indonesia brand MD is better than flash stamp machine made in Tiongkok brand Flaz. Abstrak Penelitian ini bertujuan untuk mengetahui unjuk kerja mesin stempel flash made in Tiongkok merek Flaz terhadap mesin stempel flash made in Indonesia merek MD dilihat dari performa masing-masing mesin meliputi kualitas cap stempel warna yang dihasilkannya, lama waktu pengoperasiannya, pemakaian daya serta konsumsi energi listriknya. Metode penelitian yang di gunakan adalah metode kualitatif dengan pendekatan penelitian grounded theory. Penelitian ini dilakukan di Perusahaan Pembuatan Mesin Stempel Flash made In Indonesia merek MD di Jl. Lembang Baru I Kelurahan Sudimara Barat, Ciledug, Tangerang, Banten. Hasil yang diperoleh dari penelitian unjuk kerja kedua mesin stempel flash ini adalah :  Pertama, kualitas cap stempel yang dihasilkan mesin stempel flash merek MD lebih bagus dibandingkan mesin stempel flash merek Flaz. Kedua, lama waktu operasinya 4 detik lebih cepat mesin stempel flash merek MD yaitu selama 3 detik dan 4 detik untuk mesin stempel flash merek Flaz. Ketiga, daya listrik yang dibutuhkan lebih kecil me sin stempel flash merek Flaz yaitu sebesar 136,62 watt dan 392,34 Watt untuk merek Flaz. Keempat, konsumsi energi listrik yang dibutuhkan lebih kecil mesin stempel merek Flaz yaitu 888,39 Joule dan 1709,06 Joule untuk mesin stempel flash merek MD. Kesimpulan yang diperoleh dari penelitian unjuk kerja mesin stempel flash made in Tiongkok merek Flaz terhadap mesin stempel flash made in Indonesia merek MD diukur dari parameter kualitas hasil cap dan kecepatan waktu operasi maka mesin stempel flash made in Indonesia merek MD lebih bagus dari pada mesin stempel flash made in Tiongkok merek Flaz.


2020 ◽  
Vol 9 (2) ◽  
pp. 125-134
Author(s):  
Kurnia Paranita Kartika ◽  
Riska Dhenabayu

This study aims to design a Solar Home System with an Arduino-based Smart Switching system so that the use of electrical energy generated by solar panels can be adjusted without adding power from other electricity sources, such as PLN. Calculation of Leveled Cost of Energy (LCOE) is used as the basis for the switching process that will be carried out to regulate the use of household appliances that are routinely used, regulate electricity consumption automatically, minimize usage, and calculate the effectiveness of electric power usage. The way SHS works is to collect electrical energy from sunlight, then convert DC voltage to AC so that it can be used to run household electronic equipment. To accommodate the adequacy of electrical power, an automatic adjustment is made for household appliances that are routinely used, namely house lights, which includes setting the lights on and off and the number of lights that can be activated. The advantage of this research is that the SHS system is integrated with the automatic setting of the lights installed in the house so that the number of lights on will adjust the availability of electrical energy in the battery. In addition, with the LCOE method, the level of usage can be calculated so that users can save electricity. From the results of usage testing, it is found that the application of this switching technology provides benefits for users because it is no longer dependent on PLN supply. From an economic point of view, based on the calculation of Leveled Cost of Energy (LCOE), there is a kWh value savings of Rp. 77, - for each kWh price or about 4.53% compared to purchasing electricity with prepaid mode.


2015 ◽  
Vol 137 (5) ◽  
Author(s):  
Ben Xu ◽  
Peiwen Li ◽  
Cho Lik Chan

A concentrated solar power (CSP) plant typically has thermal energy storage (TES), which offers advantages of extended operation and power dispatch. Using dual-media, TES can be cost-effective because of the reduced use of heat transfer fluid (HTF), usually an expensive material. The focus of this paper is on the effect of a start-up period thermal storage strategy to the cumulative electrical energy output of a CSP plant. Two strategies—starting with a cold storage tank (referred to as “cold start”) and starting with a fully charged storage tank (referred to as “hot start”)—were investigated with regards to their effects on electrical energy production in the same period of operation. An enthalpy-based 1D transient model for energy storage and temperature variation in solid filler material and HTF was applied for both the sensible heat storage system (SHSS) and the latent heat storage system (LHSS). The analysis was conducted for a CSP plant with an electrical power output of 60 MWe. It was found that the cold start is beneficial for both the SHSS and LHSS systems due to the overall larger electrical energy output over the same number of days compared to that of the hot start. The results are expected to be helpful for planning the start-up operation of a CSP plant with a dual-media thermal storage system.


2009 ◽  
Vol 59 (1) ◽  
pp. 175-183 ◽  
Author(s):  
Abdellah Rababah ◽  
Ahmad Al-Shuha

This paper investigates the capacity of Nutrient Film Technique (NFT) to control effluent's heavy metals discharge. A commercial hydroponic system was adapted to irrigate lettuces with primary treated wastewater for studying the potential heavy metals removal. A second commercial hydroponic system was used to irrigate the same type of lettuces with nutrient solution and this system was used as a control. Results showed that lettuces grew well when irrigated with primary treated effluent in the commercial hydroponic system. The NFT-plant system heavy metals removal efficiency varied amongst the different elements, The system's removal efficiency for Cr was more than 92%, Ni more than 85%, in addition to more than 60% reduction of B, Pb, and Zn. Nonetheless, the NFT-plants system removal efficiencies for As, Cd and Cu were lower than 30%. Results show that lettuces accumulated heavy metals in leaves at concentrations higher than the maximum acceptable European and Australian levels. Therefore, non-edible plants such as flowers or pyrethrum are recommended as value added crops for the proposed NFT.


Processes ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1117
Author(s):  
Alejandra Teutli-Sequeira ◽  
Ruben Vasquez-Medrano ◽  
Dorian Prato-Garcia ◽  
Jorge G. Ibanez

This study investigated the degradation of the herbicides diquat (DQ) and paraquat (PQ) by a solar photo-Fenton process that is mediated by Fe(III)-oxalate complexes at circumneutral pH = 6.5 in compound parabolic collectors (CPC)-type reactors. The photo-Fenton process operates efficiently at acidic pH; however, circumneutral operation was key to overcome drawbacks, such as acidification and neutralization steps, reagent costs, and the environmental footprint of chemical auxiliaries. This work revealed a remarkable reduction of total organic carbon for PQ (87%) and DQ (80%) after 300 min (at ca. 875 kJ L−1). Phytotoxicity assays confirmed that the treatment led to a considerable increase in the germination index for DQ (i.e., from 4.7% to 55.8%) and PQ (i.e., from 16.5% to 59.7%) using Cucumis sativus seeds. Importantly, treatment costs (DQ = USD$8.05 and PQ = USD$7.72) and the carbon footprint of the process (DQ = 7.37 and PQ = 6.29 kg CO2-Eqv/m3) were within the ranges that were reported for the treatment of recalcitrant substances at acidic conditions in CPC-type reactors. Life cycle assessment (LCA) evidenced that H2O2 and electricity consumption are the variables with the highest environmental impact because they contribute with ca. 70% of the carbon footprint of the process. Under the studied conditions, a further reduction in H2O2 use is counterproductive, because it could impact process performance and effluent quality. On the other hand, the main drawback of the process (i.e., energy consumption) can be reduced by using renewable energies. The sensitivity study evidenced that carbon footprint is dependent on the energy share of the local electricity mix; therefore, the use of more renewable electrical energy sources, such as wind-power and photovoltaic, can reduce greenhouse gases emissions of the process an average of 26.4% (DQ = 5.57 and PQ = 4.51 kg CO2-Eqv/m3) and 78.4% (DQ = 3.72 and PQ = 2.65 kg CO2-Eqv/m3), respectively. Finally, from the economic and environmental points of view, the experimental results evidenced that photo-assisted treatment at circumneutral pH is an efficient alternative to deal with quaternary bipyridinium compounds.


Sign in / Sign up

Export Citation Format

Share Document