scholarly journals DESIGN AND DEVELOP AUTOMATION SYSTEM FOR SAVING ELECTRICAL ENERGY IN THE STTAL OFFICE ROOM

JOURNAL ASRO ◽  
2019 ◽  
Vol 10 (3) ◽  
pp. 138
Author(s):  
Sutrisno Sutrisno ◽  
Wawan Kusdiana ◽  
Amri Rahmatullah ◽  
Bagiyo Herwono

The use of electricity in offices has been considered too wasteful. This is caused by human negligence in controlling their use. For this reason, this research was carried out as an effort to find the right method to reduce the high electricity consumption in offices. This research was conducted in the STTAL classroom, Bumimoro, Surabaya. From the results of the calculation, the total heat load in the classroom is 32,048.3 BTU or ± 4 PK. Total installed AC capacity is only 2 PK. This automation tool is a system that works automatically to regulate the use of electrical equipment based on parameters that have been determined in a program such as the presence or absence of humans, the level of light intensity and room temperature. Data collection is carried out for 6 days in the classroom, 3 days without tools and 3 days using the automation tool. Furthermore, the data is compared to the graph and the savings are calculated. The result, on day 1 is 56.11%, days 2 and 3 are 10.26% and the average savings for the 6-day trial is 33.43%. All data is recorded automatically on a micro sdcard and information about the amount of electricity consumption and the ON / OFF feature of electrical equipment can also be accessed via a smartphone with a wifi network so that users will find it easier to monitor the use of electrical equipment in the classroom.Keywords: electricity waste, heat load, automation system, electricity monitoring, electricity savings.

Author(s):  
Reza Satria Rinaldi ◽  
Yosri Riadi Lase ◽  
M. Khairul Amri Rosa

In general, the control of using electronic equipment in the classroom manually. Sometimes lecturers or students forget to turn off electronic equipment after the class so that there is a waste of electrical energy use. Application of automation of using electronic equipment is one solution to overcome these problems so that electrical energy becomes more efficient. This study designed a prototype of an automation system for electrical equipment in the classroom, namely lights, fans, and projectors. This system was also to turn off the electricity when nobody was in the class. The automation system controls the use of electrical energy in devices in the classroom through on-off control of the electrical network components connected to each device. In this design, the PIR sensor can detect the presence of people up to a distance of 7 meters. The Arduino Uno controller activates the lights in the class when the LDR Sensor detects a light intensity of less than 200 Lux. Then, the fan is active when the LM35 sensor detects the temperature in the class above 28oC. The FC-04 sensor detects the sound of clapping for control of projector ignition by the controller.


2018 ◽  
Author(s):  
Andysah Putera Utama Siahaan ◽  
Solly Aryza

Usage Unbalanced expenses are considered normal for electricity consumers and often found in the field. There are a lot of Distribution Substation of 20 KV installed to serve electricity users, and the lack of management of the installation of kWh Meter based on the profile of each customer that is different from each other, as well as the varying use of electrical energy in each customer causing an unbalanced distribution of Distribution Transformers. A raises another problem, namely the loss of electrical power due to an imbalance in the Electric Load in each phase. Therefore, the authors analyze the effect of load imbalances on the age of electrical equipment. Then apply the right steps to balance the transformer load, so that consumers are expected to understand the consequences of Electric Load Imbalance better.


2018 ◽  
Vol 5 (2) ◽  
pp. 263
Author(s):  
Made Dwi Krisna Putra Sudiharta ◽  
I Gede Dyana Arjana ◽  
Cok Gede Indra Partha

The use of air conditioners (AC) and lighting that do not suit the needs and excessive results in a lack of comfort and high use of electrical energy. Ultrasonic Sensor of SRF-04 functions to find out the number of people in the room, temperature sensor of DHT 22 functions to calculate the temperature and humidity inside and outside the room, Light Intensity sensor of GY-302 functions to read the level of light intensity in the room and micro controller of Arduino Mega 2560 functions to process all input sensors become the command for operating the AC units and lights. The AC and lighting control system working well and can determine the time and number of AC and light that is needed. Those are based by Indonesian room comfort standards so that it can increase the comfort of the room in terms of cooling systems and room lighting with a temperature of 22oC to 25 oC and light intensity of 300 lux.


ICCD ◽  
2019 ◽  
Vol 2 (1) ◽  
pp. 363-368
Author(s):  
Rummi Sirait ◽  
Nifty Fath ◽  
Eka Purwa Laksana

The use of electrical equipment that is not in accordance with the standards established by SNI (Standar Nasional Indonesia) and the installation of electrical equipment that is not in accordance with the provisions are still often found in people's homes, so that the threat of electric fire hazards will be possible. Data from the recapitulation of fire incidents in DKI Jakarta Province in 2018 revealed that the biggest cause of fire was due to electrical short circuit, as many as 494 fire incidents occurred in a total of 1667 residences. This is quite alarming because many of the fires are caused by the low quality and installation of cables in most people's homes and residents do not understand the dangers of using inappropriate electrical energy. To participate in assisting the government inconducting socialization about the right electricity usage to prevent fires, the PPM activities in the form of socialization and direct assistance to residents' homes. The purpose of this activity is so that in the future residents of the Tugu Selatan Village of North Jakarta are more concerned about the electrical installations andthe electrical equipment they use by following with specified standards. This activity is very useful for the residents, proven by their enthusiasm in participating in the extension program with questions about the correct use of electrical energy and people's curiosity in knowing how to save electricity usage at home and calculate the cost of using electricity in their homes.


2021 ◽  
Vol 6 (2) ◽  
pp. 132
Author(s):  
Akhmad Syarif ◽  
Kusrini Kusrini ◽  
Eko Pramono

Sarang walet merupakan tempat memproduksi air liur burung walet yang telah mengeras. Dalam pembuatan sarang walet harus memiliki kriteria-kriteria. Beberapa kriteria tersebut adalah suhu ruangan walet idealnya adalah 26-29 derajat celcius. Kelembaban udara juga berpengaruh terhadap sarang walet. Biasanya untuk mengatasi hal ini terdapat kolam air untuk menampung air pada ruangan. Air yang ada pada kolam tersebut di gunakan untuk mengatur kelembaban udara. Sehingga akan menjadi mirip seperti goa pada umum nya. Tingkat kelembaban dari 70 sampai 90 derajat celcius. Pada Intensitas cahaya 0 lux (gelap total) adalah intensitas cahaya yang disukai oleh Burung Walet untuk bersarang. Untuk bisa mendapatkan suhu dan kelembaban ideal diperlukan system automatis dalam mengontrol suhu dan kelembaban secara realtime. Dengan system automatisasi yang di atur melalui mikrokontroller menggunakan metode Fuzzy Sugeno untuk menghasilkan puteran air pada keran sehingga mempermudah kontrol ruang sarang walet dan juga data suhu serta kelembaban yang di kirim ke database untuk mempermudah monitoring suhu dan kelembaban dari website. Hasilnya adalah dengan penggunaan sistem kontrol suhu dan kelembaban menggunakan metode fuzzy Sugeno didapatkan hasil dengan 3 parameter yaitu suhu, kelembaban dan cahaya adalah 61.11%, sedangkan dengan 2 parameter yaitu suhu dan kelembaban adalah 39.29% dari 18x percobaan. Kata Kunci—Microcontroller, Arduino, Fuzzy Sugeno, IoTSwallow's nest is a place to produce hardened swallow birds' saliva. In making swallow nests must have criteria. Some of these criteria are the ideal walet room temperature is 26-29 degrees Celsius. Humidity also affects swallow's nest. Usually to overcome this there is a pool of water to hold water in the room. The water in the pool is used to regulate the humidity of the air. So it will be like a cave in general. Humidity levels from 70 to 90 degrees Celsius. At 0 Lux (total dark) light intensity is the intensity of light favored by Swallow for nesting. To be able to get the ideal temperature and humidity needed an automatic system to control temperature and humidity in real time. With the automation system that is set through a microcontroller using the Fuzzy Sugeno method to produce water spin on the tap making it easier to control swallow nest space and temperature and humidity data sent to the database to facilitate monitoring of temperature and humidity from the website. The result is the use of a temperature and humidity control system using the Sugeno fuzzy method obtained results with 3 parameters namely temperature, humidity and light is 61.11%, while with 2 parameters namely temperature and humidity is 39.29% from 18x experiments. Keywords—Microcontroller, Arduino, Fuzzy Sugeno, IoT


2006 ◽  
Vol 46 ◽  
pp. 168-173
Author(s):  
Hitoshi Kohri ◽  
Ichiro Shiota ◽  
Masahiko Kato ◽  
Isao J. Ohsugi ◽  
Takashi Goto

Bi2Te3 is the best compound for thermoelectric materials around the room temperature. If the temperature range is shifted to higher side, it is useful to obtain electrical energy from waste heat source which is abundant at the temperature around 500 K. In this experiment, Bi2Te3-GeTe pseudo binary compounds were investigated to shift the temperature range. The lattice thermal conductivity was remarkably decreased at 50 or 75 mol%GeTe by synergy effect of solid solution and grain boundaries. The peak temperature of figure of merit Z for Bi2Te3-GeTe pseudo binary compounds was higher than Bi2Te3.


2019 ◽  
Vol 17 (1) ◽  
pp. 42
Author(s):  
Jamal Jamal ◽  
Marlina Marlina ◽  
Floransya Dwi

Basic electricity tariffs that continue to increase force various parties to race to carry out savings programs, the right thing to apply the savings program is energy management and one of them is an energy audit. The energy audit carried out in this study was an energy audit at PT. Makassar EPFM. The energy audit starts with the collection and processing of energy consumption data at the factory, calculates the Energy Consumption Intensity (IKE). From the results of the calculation of the intensity of energy consumption it is known that the level of efficiency in the use of electrical energy in the building. The efficiency of electricity consumption at PT. EPFM can be improved


Author(s):  
Vicky Wibisono ◽  
Yudi Kristyawan

Hydroponic Nutrient Film Technique (NFT) is most widely applied on a home and industrial scale. One of the drawbacks of the NFT hydroponic system is that it is very dependent on electricity for 24 hours to power the water pump. The basic principle of the NFT hydroponic system is to flow nutrients to plant roots with a shallow and circulating nutrient layer so that plants get enough water, nutrients, and oxygen.  Therefore, the role of the water pump in the hydroponic NFT system is crucial. This research makes the automation of the NFT hydroponic system more efficient using Arduino.    There are two main parts to this automation system: the control of pH levels and nutrient distribution.  The pH sensor is used to control the pH level of nutrients, and the ultrasonic sensor is used for nutrient distribution. Efficiency is emphasized more on the distribution of nutrients because it absorbs more electrical energy. The method used is to flow the nutrients in the reservoir to a storage tank that is located higher than the plant using a water pump with a large discharge. Nutrients are transported to each plant using the force of gravity.  The nutrient volume is controlled automatically using an ultrasonic sensor in the storage tank. The water pump is only activated by the ultrasonic sensor readings on the storage tank. So that the need for electricity to turn on the water pump is reduced, based on tests carried out on the use of a 220-volt AC / 50 Hz / 125-watt water pump and the use of a 250-liter nutrient storage tank, it can be concluded that the system that has been created can save 70% of electricity consumption.


1991 ◽  
Vol 30 (01) ◽  
pp. 35-39 ◽  
Author(s):  
H. S. Durak ◽  
M. Kitapgi ◽  
B. E. Caner ◽  
R. Senekowitsch ◽  
M. T. Ercan

Vitamin K4 was labelled with 99mTc with an efficiency higher than 97%. The compound was stable up to 24 h at room temperature, and its biodistribution in NMRI mice indicated its in vivo stability. Blood radioactivity levels were high over a wide range. 10% of the injected activity remained in blood after 24 h. Excretion was mostly via kidneys. Only the liver and kidneys concentrated appreciable amounts of radioactivity. Testis/soft tissue ratios were 1.4 and 1.57 at 6 and 24 h, respectively. Testis/blood ratios were lower than 1. In vitro studies with mouse blood indicated that 33.9 ±9.6% of the radioactivity was associated with RBCs; it was washed out almost completely with saline. Protein binding was 28.7 ±6.3% as determined by TCA precipitation. Blood clearance of 99mTc-l<4 in normal subjects showed a slow decrease of radioactivity, reaching a plateau after 16 h at 20% of the injected activity. In scintigraphic images in men the testes could be well visualized. The right/left testis ratio was 1.08 ±0.13. Testis/soft tissue and testis/blood activity ratios were highest at 3 h. These ratios were higher than those obtained with pertechnetate at 20 min post injection.99mTc-l<4 appears to be a promising radiopharmaceutical for the scintigraphic visualization of testes.


2020 ◽  
Vol 14 (1) ◽  
pp. 48-54
Author(s):  
D. Ostrenko ◽  

Emergency modes in electrical networks, arising for various reasons, lead to a break in the transmission of electrical energy on the way from the generating facility to the consumer. In most cases, such time breaks are unacceptable (the degree depends on the class of the consumer). Therefore, an effective solution is to both deal with the consequences, use emergency input of the reserve, and prevent these emergency situations by predicting events in the electric network. After analyzing the source [1], it was concluded that there are several methods for performing the forecast of emergency situations in electric networks. It can be: technical analysis, operational data processing (or online analytical processing), nonlinear regression methods. However, it is neural networks that have received the greatest application for solving these tasks. In this paper, we analyze existing neural networks used to predict processes in electrical systems, analyze the learning algorithm, and propose a new method for using neural networks to predict in electrical networks. Prognostication in electrical engineering plays a key role in shaping the balance of electricity in the grid, influencing the choice of mode parameters and estimated electrical loads. The balance of generation of electricity is the basis of technological stability of the energy system, its violation affects the quality of electricity (there are frequency and voltage jumps in the network), which reduces the efficiency of the equipment. Also, the correct forecast allows to ensure the optimal load distribution between the objects of the grid. According to the experience of [2], different methods are usually used for forecasting electricity consumption and building customer profiles, usually based on the analysis of the time dynamics of electricity consumption and its factors, the identification of statistical relationships between features and the construction of models.


Sign in / Sign up

Export Citation Format

Share Document