scholarly journals Experimental investigation of the effect of TiO2 nanofluid and KCl salt on polymeric water-based drilling fluid properties

Author(s):  
AmirHossein Parizad ◽  
Ali Khorram Ghahfarokhi ◽  
Khalil Shahbazi ◽  
Amin Daryasafar ◽  
Tofigh Sayahi ◽  
...  

In petroleum industries, nanofluids have the potential to improve the characteristics of the fluids used in drilling wells or Enhanced Oil Recovery (EOR) processes. In this study, a water based mud containing polymer was considered as the base fluid. Different concentrations of TiO2 nanoparticle (0, 0.5 and 0.75 wt%) and different concentrations of KCl salt (0, 0.5, 1.5, and 3 wt%) were added to the base fluid and exposed to different temperatures (30, 50, 70 and 90 °C) with 19 different shear rates for investigating the effects of nanoparticle concentration, salt concentration, temperature and shear rate on viscosity of the base mud. Presence of TiO2 particles enhanced not only the rheological behavior but also electrical and thermal conductivity of fluid up to 25% and 43%, respectively. Furthermore, the stability of the fluid containing salt and nanoparticle was investigated in these temperatures owing to the fact that the temperature could cause degradation of the fluid. For the purpose of investigating this phenomenon, the after cooling experiment was conducted. In addition, the data gathered in this investigation were examined by using three famous rheological models (Power law, Herschel-Bulkley and Herschel-Bulkley-Papanastasiou models) and the rheological parameters of each model were determined.

2021 ◽  
Author(s):  
Farqad Hadi ◽  
Ali Noori ◽  
Hussein Hussein ◽  
Ameer Khudhair

Abstract It is well known that drilling fluid is a key parameter for optimizing drilling operations, cleaning the hole, and managing the rig hydraulics and margins of surge and swab pressures. Although the experimental works present valid and reliable results, they are expensive and time consuming. On the other hand, continuous and regular determination of the rheological mud properties can perform its essential functions during well construction. More uncertainties in planning the drilling fluid properties meant that more challenges may be exposed during drilling operations. This study presents two predictive techniques, multiple regression analysis (MRA) and artificial neural networks (ANNs), to determine the rheological properties of water-based drilling fluid based on other simple measurable properties. While mud density (MW), marsh funnel (MF), and solid% are key input parameters in this study, the output functions or models are plastic viscosity (PV), yield point (YP), apparent viscosity (AV), and gel strength. The prediction methods were demonstrated by means of a field case in eastern Iraq, using datasets from daily drilling reports of two wells in addition to the laboratory measurements. To test the performance ability of the developed models, two error-based metrics (determination coefficient R2 and root mean square error RMSE) have been used in this study. The current results of this study support the evidence that MW, MF, and solid% are consistent indexes for the prediction of rheological properties. Both mud density and solid content have a relative-significant effect on increasing PV, YP, AV, and gel strength. However, a scattering around each fit curve is observed which proved that one rheological property alone is not sufficient to estimate other properties. The results also reveal that both MRA and ANN are conservative in estimating the fluid rheological properties, but ANN is more precise than MRA. Eight empirical mathematical models with high performance capacity have been developed in this study to determine the rheological fluid properties based on simple and quick equipment as mud balance and marsh funnel. This study presents cost-effective models to determine the rheological fluid properties for future well planning in Iraqi oil fields.


2011 ◽  
Vol 367 ◽  
pp. 393-401 ◽  
Author(s):  
Amol Bali ◽  
Babs Mufutau Oyeneyin ◽  
Ebenezer Adom

Criticality of rheology for heavy oil recovery is the main purpose of this paper supported by different results. The Bingham Plastic, Power Law and Herschel Bulkley rheological models have been adopted for the purpose of this paper. Rheological characterisation was carried out for different temperatures. Rheological behaviour of non-Newtonian heavy oil for different shear rates is analysed in this paper. Effective shear and bulk viscosities for different flow rates are compared for all rheological models. Using the horizontal well productivity model, the drawdown values for all rheological models are determined. Similarly for the sand management purpose the critical rates of Newtonian and these three non-Newtonian fluids are plotted to determine the critical drawdown values for each type of fluid. Impact of drainage profile on the effective viscosities is also compared for different drainage profiles. Shear rate models are proposed in this paper for Bingham Plastic, Power Law and Herschel Bulkley rheological models. The new Micro-PVT equipment is also introduced for determining the PVT properties and rheological behaviour of heavy oil. Nomenclature


2021 ◽  
Vol 21 (3) ◽  
pp. 123-130
Author(s):  
Ekaterina L. Leusheva ◽  
Nazim T. Alikhanov

Mining and geological conditions for the development of new fields are becoming more difficult every year. Accordingly, the requirements for ensuring the environmental and technological safety of the drilling process are becoming more and more important. To ensure such a process, it is necessary to use correctly selected drilling fluids with proper characteristics: rheological parameters sufficient for effective cleaning of the well bottom, density sufficient to create back pressure, fluid loss to ensure a high-quality filter cake. Modern environmental requirements dictate the abandonment of hydrocarbon-based solutions. But when using water-based solutions, there are no suitable solutions, especially with their high density, since the use of barite can lead to a decrease in reservoir productivity. In this regard, the analysis of the problem and the search for options for creating water-based drilling fluids, weighted without the addition of barite, having the properties of maintaining the stability of the wellbore, ensuring safe drilling and opening productive formations without damaging the reservoir characteristics, was carried out. Such a solution was found in changing the base of the drilling fluid - highly mineralized fluids or solutions based on saturated brines. Brines must be created on the basis of inorganic salts that have good solubility, for example, chlorides, bromides. Due to the content of salts, the fluids have an inhibitory effect, and depending on the volume of dissolution, the density of the drilling fluids can be controlled. The scientific works of foreign and domestic scientists analyzed in the article have been published over the past five years, which indicates the relevance of this development. The selected compositions are presented and theoretically investigated, which were also tested in the field conditions.


2020 ◽  
Vol 12 (7) ◽  
pp. 2719 ◽  
Author(s):  
Abdelmjeed Mohamed ◽  
Saad Al-Afnan ◽  
Salaheldin Elkatatny ◽  
Ibnelwaleed Hussein

Barite sag is a challenging phenomenon encountered in deep drilling with barite-weighted fluids and associated with fluid stability. It can take place in vertical and directional wells, whether in dynamic or static conditions. In this study, an anti-sagging urea-based additive was evaluated to enhance fluid stability and prevent solids sag in water-based fluids to be used in drilling, completion, and workover operations. A barite-weighted drilling fluid, with a density of 15 ppg, was used with the main drilling fluid additives. The ratio of the urea-based additive was varied in the range 0.25–3.0 vol.% of the total base fluid. The impact of this anti-sagging agent on the sag tendency was evaluated at 250 °F using vertical and inclined sag tests. The optimum concentration of the anti-sagging agent was determined for both vertical and inclined wells. The effect of the urea-additive on the drilling fluid rheology was investigated at low and high temperatures (80 °F and 250 °F). Furthermore, the impact of the urea-additive on the filtration performance of the drilling fluid was studied at 250 °F. Adding the urea-additive to the drilling fluid improved the stability of the drilling fluid, as indicated by a reduction in the sag factor. The optimum concentration of this additive was found to be 0.5–1.0 vol.% of the base fluid. This concentration was enough to prevent barite sag in both vertical and inclined conditions at 250 °F, with a sag factor of around 0.5. For the optimum concentration, the yield point and gel strength (after 10 s) were improved by around 50% and 45%, respectively, while both the plastic viscosity and gel strength (after 10 min) were maintained at the desired levels. Moreover, the anti-sagging agent has no impact on drilling fluid density, pH, or filtration performance.


2021 ◽  
Author(s):  
Muhammad Awais Ashfaq Alvi ◽  
Mesfin Belayneh ◽  
Arild Saasen ◽  
Sulalit Bandyopadhyay

Abstract Properly designed drilling fluid is a key element in achieving safe and effective drilling operations. Rheological parameters of drilling fluid determine the equivalent circulation density, the pump pressure, and hole cleaning efficiency. Also, they have a significant role in predicting the stability of drilling fluid under static and low shear rates. The chemical composition of the drilling fluid controls the rheological parameters. Recently, studies have shown that a small concentration of nanosized materials in the drilling fluid can substantially impact the rheological parameters of the drilling fluids. In this study, various nanoparticles (NPs) with different shapes, sizes, and surface charges were used to investigate their impact on the viscous properties of water-based drilling fluid. Bentonite and KCl water-based drilling fluids were used as the base fluids. NPs such as Iron oxide, Silica (SiO2), and multi-walled carbon nanotubes (MWCNT) were added to these base fluids. Also, surface functionalization of the NPs with polymer and functional groups such as -OH and -COOH groups was done to compare the effect of bare NPs with surface functionalized NPs. Hershel-Buckley model with dimensionless shear rates was used to calculate the low and high shear curvature exponents, surplus stress, and yield stress of the samples. Results indicate that NPs alter drilling fluid’s viscous properties based on their sizes, shapes, and surface charges. Moreover, the functionalization of NPs also modifies the properties based on the functional group attached to the NPs surface. This work shows that changing the size, shape, and surface charge of NPs has impact on viscous parameters, and NPs with different properties can fine-tune the fluid’s viscous properties based on the requirement for drilling fluid.


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1644
Author(s):  
Camilo Pedrosa ◽  
Arild Saasen ◽  
Bjørnar Lund ◽  
Jan David Ytrehus

The cuttings transport efficiency of various drilling fluids has been studied in several approaches. This is an important aspect, since hole cleaning is often a bottleneck in well construction. The studies so far have targeted the drilling fluid cuttings’ transport capability through experiments, simulations or field data. Observed differences in the efficiency due to changes in the drilling fluid properties and compositions have been reported but not always fully understood. In this study, the cuttings bed, wetted with a single drilling fluid, was evaluated. The experiments were performed with parallel plates in an Anton Paar Physica 301 rheometer. The results showed systematic differences in the internal friction behaviors between tests of beds with oil-based and beds with water-based fluids. The observations indicated that cutting beds wetted with a polymeric water-based fluid released clusters of particles when external forces overcame the bonding forces and the beds started to break up. Similarly, it was observed that an oil-based fluid wetted bed allowed particles to break free as single particles. These findings may explain the observed differences in previous cutting transport studies.


2020 ◽  
pp. 70-74
Author(s):  
V.V. Guliyev ◽  
◽  
◽  

Currently, a great number of drilling fluids with different additives are used all over the world. Such additives are applied to control the properties of the drilling mud. The main purpose for controlling is to achieve more effective and safe drilling process. This research work aims to develop Water-Based Mud (WBM) with a Coefficient of Friction (CoF) as low as Oil-Based Mud (OBM) and better rheological properties. As it is known, produced CoF by WBM is higher than OBM, which means high friction between wellbore or casing and drill string. It was the reason for studying the effect of nanosilica on drilling fluid properties such as lubricity, rheological parameters and filtrate loss volume of drilling mud. The procedures were carried out following API RP 13B and API 13I standards. Five concentrations of nanosilica were selected to be tested. According to the results obtained, it was defined that adding nanosilica into the mud decreases CoF of basic WBM by 26 % and justifies nanosilica as a good lubricating agent for drilling fluid. The decreasing trend in coefficient of friction and plastic viscosity for nanosilica was obtained until the concentration of 0.1 %. This reduction is due to the shear thinning or pseudoplastic fluid behavior. After 0.1 %, an increase at PV value trend indicates that it does not follow shear thinning behavior and after reaching a certain amount of dissolved solids in the mud, it acts like normal drilling fluid. The yield point of the mud containing nanoparticles was higher than the basic one. Moreover, a growth in the concentration leads to an increase in yield point value. The improvement of this fluid system cleaning capacity via hydraulics modification and wellhole stability by filter cake endurance increase by adding nanosilica is shown as well. The average well construction data of “Neft Dashlary” field was used for the simulation studies conducted for the investigation of hydraulics parameters of reviewed fluids for all series of experiments. The test results were accepted reliable in case of at least 3 times repeatability.


Author(s):  
Jan David Ytrehus ◽  
Ali Taghipour ◽  
Sneha Sayindla ◽  
Bjørnar Lund ◽  
Benjamin Werner ◽  
...  

One important requirement for a drilling fluid is the ability to transport the cuttings out of the borehole. Improved hole cleaning is a key to solve several challenges in the drilling industry and will allow both longer wells and improved quality of well construction. It has been observed, however, that drilling fluids with similar properties according to the API standard can have significantly different behavior with respect to hole cleaning performance. The reasons for this are not fully understood. This paper presents results from flow loop laboratory tests without and with injected cuttings size particles using a base oil and a commercial oil based drilling fluid. The results demonstrate the importance of the rheological properties of the fluids for the hole cleaning performance. A thorough investigation of the viscoelastic properties of the fluids was performed with a Fann viscometer and a Paar-Physica rheometer, and was used to interpret the results from the flow loop experiments. Improved understanding of the fluid properties relevant to hole cleaning performance will help develop better models of wellbore hydraulics used in planning of well operations. Eventually this may lead to higher ROP with water based drilling fluids as obtained with oil based drilling fluids. This may ease cuttings handling in many operations and thereby significantly reduce the drilling cost using (normally) more environmentally friendly fluids. The experiments have been conducted as part of an industry-sponsored research project where understanding the hole cleaning performance of various oil and water based drilling fluids is the aim. The experiments have been performed under realistic conditions. The flow loop includes a 10 meter long test section with 2″ OD freely rotating drillstring inside a 4″ ID wellbore made of concrete. Sand particles were injected while circulating the drilling fluid through the test section in horizontal position.


2019 ◽  
Vol 17 (3) ◽  
pp. 722-733 ◽  
Author(s):  
Afaque Ahmed ◽  
Ismail Mohd Saaid ◽  
Abdelazim Abbas Ahmed ◽  
Rashidah M. Pilus ◽  
Mirza Khurram Baig

AbstractRecently, nanoparticles have proven to enhance oil recovery on the core-flood scale in challenging high-pressure high-temperature reservoirs. Nanomaterials generally appear to improve oil production through wettability alteration and reduction in interfacial tension between oil and water phases. Besides, they are environmentally friendly and cost-effective enhanced oil recovery techniques. Studying the rheological properties of nanoparticles is critical for field applications. The instability of nanoparticle dispersion due to aggregation is considered as an unfavorable phenomenon in nanofluid flooding while conducting an EOR process. In this study, wettability behavior and rheological properties of surface-treated silica nanoparticles using internal olefins sulfonates (IOS20–24 and IOS19–23), anionic surfactants were investigated. Surface modification effect on the stability of the colloidal solution in porous media and oil recovery was inspected. The rheology of pure and surface-treated silica nanoparticles was investigated using a HPHT rheometer. Morphology and particle size distributions of pure and coated silica nanoparticles were studied using a field emission scanning electron microscope. A series of core-flood runs was conducted to evaluate the oil recovery factor. The coated silica nanoparticles were found to alter rheological properties and exhibited a shear-thinning behavior as the stability of the coated silica nanoparticles could be improved considerably. At low shear rates, the viscosity slightly increases, and the opposite happens at higher shear rates. Furthermore, the surface-modified silica nanoparticles were found to alter the wettability of the aqueous phase into strongly water-wet by changing the contact angle from 80° to 3° measured against glass slides representing sandstone rocks. Oil–water IFT results showed that the surface treatment by surfactant lowered the oil–water IFT by 30%. Also, the viscosity of brine increased from 0.001 to 0.008 Pa s by introducing SiO2 nanoparticles to the aqueous phase for better displacement efficiency during chemical-assisted EOR. The core-flood experiments revealed that the ultimate oil recovery is increased by approximately 13% with a surfactant-coated silica nanofluid flood after the conventional waterflooding that proves the potential of smart nanofluids for enhancing oil recovery. The experimental results imply that the use of surfactant-coated nanoparticles in tertiary oil recovery could facilitate the displacement efficiency, alter the wettability toward more water-wet and avoid viscous fingering for stable flood front and additional oil recovery.


Author(s):  
Eric Cayeux ◽  
Amare Leulseged

Abstract It is nowadays well accepted that the steady state rheological behavior of drilling fluids must be modelled by at least three parameters. One of the most often used models is the yield power law, also referred as the Herschel-Bulkley model. Other models have been proposed like the one from Robertson-Stiff, while other industries have used other three-parameter models such as the one from Heinz-Casson. Some studies have been made to compare the degree of agreement between different rheological models and rheometer measurements but in most cases, already published works have only used mechanical rheometers that have a limited number of speeds and precision. For this paper, we have taken measurements with a scientific rheometer in well-controlled conditions of temperature and evaporation, and for relevant shear rates that are representative to normally encountered drilling operation conditions. Care has been made to minimize the effect of thixotropy on measurements, as the shear stress response of drilling fluids depends on its shear history. Measurements have been made at different temperatures, for various drilling fluid systems (both water and oil-based), and with variable levels of solid contents. Also, the shear rate reported by the rheometer itself, is corrected to account for the fact that the rheometer estimates the wall shear rate on the assumption that the tested fluid is Newtonian. A measure of proximity between the measurements and a rheological model is defined, thereby allowing the ranking of different rheological behavior model candidates. Based on the 469 rheograms of various drilling fluids that have been analyzed, it appears that the Heinz-Casson model describes most accurately the rheological behavior of the fluid samples, followed by the model of Carreau, Herschel-Bulkley and Robertson-Stiff, in decreasing order of fidelity.


Sign in / Sign up

Export Citation Format

Share Document