Development of New Models to Determine the Rheological Parameters of Water-based Drilling Fluid Using Artificial Intelligence

2021 ◽  
Author(s):  
Farqad Hadi ◽  
Ali Noori ◽  
Hussein Hussein ◽  
Ameer Khudhair

Abstract It is well known that drilling fluid is a key parameter for optimizing drilling operations, cleaning the hole, and managing the rig hydraulics and margins of surge and swab pressures. Although the experimental works present valid and reliable results, they are expensive and time consuming. On the other hand, continuous and regular determination of the rheological mud properties can perform its essential functions during well construction. More uncertainties in planning the drilling fluid properties meant that more challenges may be exposed during drilling operations. This study presents two predictive techniques, multiple regression analysis (MRA) and artificial neural networks (ANNs), to determine the rheological properties of water-based drilling fluid based on other simple measurable properties. While mud density (MW), marsh funnel (MF), and solid% are key input parameters in this study, the output functions or models are plastic viscosity (PV), yield point (YP), apparent viscosity (AV), and gel strength. The prediction methods were demonstrated by means of a field case in eastern Iraq, using datasets from daily drilling reports of two wells in addition to the laboratory measurements. To test the performance ability of the developed models, two error-based metrics (determination coefficient R2 and root mean square error RMSE) have been used in this study. The current results of this study support the evidence that MW, MF, and solid% are consistent indexes for the prediction of rheological properties. Both mud density and solid content have a relative-significant effect on increasing PV, YP, AV, and gel strength. However, a scattering around each fit curve is observed which proved that one rheological property alone is not sufficient to estimate other properties. The results also reveal that both MRA and ANN are conservative in estimating the fluid rheological properties, but ANN is more precise than MRA. Eight empirical mathematical models with high performance capacity have been developed in this study to determine the rheological fluid properties based on simple and quick equipment as mud balance and marsh funnel. This study presents cost-effective models to determine the rheological fluid properties for future well planning in Iraqi oil fields.

2012 ◽  
Vol 476-478 ◽  
pp. 2304-2310
Author(s):  
Kai He Lv ◽  
Xue Dong Wu ◽  
Tao Shi ◽  
Kuan Long Ren ◽  
Yu Xia Liu

An high-performance water-based drilling fluid is a hot subject of research both at home and abroad in recent years. In this paper, the inhibition property and the influence of amino polyols AP-1 and aluminum polymer DLP-1 on drilling fluid properties were evaluated, on this basis, through the formula optimization, the high-performance water based drilling fluid was developed and and field applied. Both laboratory study and field application showed that aluminum polymer can reduce viscosity and filtration rate, and can effectively inhibit the hydration expansion of clay. Amino polyols had a little effect on the viscosity, gel strength and filtration of drilling fluid, but it had a good shale inhibition. This drilling fluid has good properties in rheology, filtration, inhibition and anti-contamination, with a satisfactory overall performance, which is helpful in solving wellbore instability that are due to unenven hydration or well developed micro fractures.


Sensors ◽  
2020 ◽  
Vol 20 (10) ◽  
pp. 2787
Author(s):  
Ahmed Gowida ◽  
Salaheldin Elkatatny ◽  
Khaled Abdelgawad ◽  
Rahul Gajbhiye

High-bentonite mud (HBM) is a water-based drilling fluid characterized by its remarkable improvement in cutting removal and hole cleaning efficiency. Periodic monitoring of the rheological properties of HBM is mandatory for optimizing the drilling operation. The objective of this study is to develop new sets of correlations using artificial neural network (ANN) to predict the rheological parameters of HBM while drilling using the frequent measurements, every 15 to 20 min, of mud density (MD) and Marsh funnel viscosity (FV). The ANN models were developed using 200 field data points. The dataset was divided into 70:30 ratios for training and testing the ANN models respectively. The optimized ANN models showed a significant match between the predicted and the measured rheological properties with a high correlation coefficient (R) higher than 0.90 and a maximum average absolute percentage error (AAPE) of 6%. New empirical correlations were extracted from the ANN models to estimate plastic viscosity (PV), yield point (YP), and apparent viscosity (AV) directly without running the models for easier and practical application. The results obtained from AV empirical correlation outperformed the previously published correlations in terms of R and AAPE.


Author(s):  
AmirHossein Parizad ◽  
Ali Khorram Ghahfarokhi ◽  
Khalil Shahbazi ◽  
Amin Daryasafar ◽  
Tofigh Sayahi ◽  
...  

In petroleum industries, nanofluids have the potential to improve the characteristics of the fluids used in drilling wells or Enhanced Oil Recovery (EOR) processes. In this study, a water based mud containing polymer was considered as the base fluid. Different concentrations of TiO2 nanoparticle (0, 0.5 and 0.75 wt%) and different concentrations of KCl salt (0, 0.5, 1.5, and 3 wt%) were added to the base fluid and exposed to different temperatures (30, 50, 70 and 90 °C) with 19 different shear rates for investigating the effects of nanoparticle concentration, salt concentration, temperature and shear rate on viscosity of the base mud. Presence of TiO2 particles enhanced not only the rheological behavior but also electrical and thermal conductivity of fluid up to 25% and 43%, respectively. Furthermore, the stability of the fluid containing salt and nanoparticle was investigated in these temperatures owing to the fact that the temperature could cause degradation of the fluid. For the purpose of investigating this phenomenon, the after cooling experiment was conducted. In addition, the data gathered in this investigation were examined by using three famous rheological models (Power law, Herschel-Bulkley and Herschel-Bulkley-Papanastasiou models) and the rheological parameters of each model were determined.


Author(s):  
Tariq Ahmed ◽  
Nura Makwashi

The selection and control of a suitable drilling fluid is necessary to successfully drill an oil and gas well. The rheological properties of drilling fluids vary with changes in conditions such as time and temperature. Slight changes in these conditions can cause unpredictable and significant changes in the mud’s properties. This makes it necessary to study the rheology of drilling fluids and how it is affected by these changes. At the rig sites, tests are carried out by the mud engineers to ensure that the properties of the drilling fluids are within the required limits. Similar tests were carried out at the laboratory in this work to determine the plastic viscosity, yield point, gel strength of mud samples at different conditions of ageing time, temperature and concentration of Xanthan gum (X.G) used as an additive. The Experiments carried out were grouped into three. The first was done with the aim to further explain how the Bentonite and Sepiolite water-based drilling fluids behaves after been aged for certain period. The second sets of experiments were conducted to investigate how the rheological properties of water-based Bentonite muds are affected by different concentration of xanthan gum added as an additive to improve the muds properties and the last sets of experiments were done to investigate the ageing effect on Bentonite mud treated with 250mg/L xanthan gum. Effects of temperature were also considered in these experiments with a 10℃ variation in the first group and 20℃ in the other two groups between readings from 20℃ to 60℃ . Results obtained indicated that Sepiolite water-based drilling fluid offers better plastic viscosity and yield point as compared to Bentonite water-based drilling fluids. It was also found that the viscosity and yield point of Sepiolite, Bentonite and treated Bentonite muds decreases with increase ageing time and temperature while the gel strength increases with ageing time but similarly decreases with increase in temperature. In the second group, results obtained indicated that plastic viscosity, yield point and gel strength increases as concentration of xanthan gum increases, all of which decreases with increase in temperature.


Author(s):  
Ved Prakash ◽  
Neetu Sharma ◽  
Munmun Bhattacharya

AbstractRheological and filtration properties of drilling fluid contribute a vital role in successful drilling operations. Rheological parameters such as apparent viscosity (AV), plastic viscosity (PV), yield point (YP) and gel strength of drilling fluids are very essential for hydraulic calculations and lifting of drill cuttings during the drilling operation. Control of filtration loss volume is also very important for cost effective and successful drilling operations. Therefore, the main goal of this research is to improve the rheological and filtration properties of Grewia Optiva fibre powder (GOFP) by using 30–50 nm size of silica nano particles (SNP) in water-based drilling fluid. The experimental outcomes revealed that after hot rolling of mud samples at 100 °C for 16 h, the low pressure-low temperature (LPLT) and high pressure-high temperature (HPHT) filtration loss of GOFP additives was improved, after the addition of SNP on it. The mixture of 5% GOFP + 4% SNP has reduced the LPLT and HPHT filtration loss of drilling fluid by 74.03 and 78.12%, respectively, as compared to base mud. Thus, it was concluded that after the addition of 0.4% SNP, the LPLT and HPHT filtration control ability of GOFP additive in WBM were increased by 17.6 and 15%, respectively. The rheological parameters such as AV, PV, YP and gelation of drilling fluids were also improved by the addition of GOFP + SNP mixture in the base mud. Therefore, the implementation of GOFP + SNP mixture in water-based mud showed auspicious results which reaffirm the feasibility of using them in the successful drilling operations.


2018 ◽  
Vol 11 (1) ◽  
pp. 98-106 ◽  
Author(s):  
Ohenewaa K. Dankwa ◽  
Prince Opoku Appau ◽  
Eric Broni-Bediako

Introduction:Drilling fluid selection plays a key role in preventing major problems encountered during drilling operations such as hole pack-off, stuck pipe and loss circulation. Mud contamination which results from the overtreatment of the mud system with additives or foreign material entering the mud system during drilling operations causes unwanted changes in the properties of the mud. This makes the mud system inefficient in performing its major roles. This research studies the effects of monovalent and divalent salts namely Potassium Chloride, Calcium Chloride, and Magnesium Chloride on the rheological properties of water-based mud system which is most vulnerable to contamination.Methods:Sixteen mud samples were formulated of which fifteen were contaminated each with different concentrations (0.75 g, 1.50 g, 2.50 g, 3.50 g, and 5.0 g) of the various salts at ambient temperature.Results:The results showed that the rheological properties such as plastic viscosity, apparent viscosity and yield point of the mud samples decreased as the concentrations of various salts increase.Conclusion:It was concluded that increase in the concentration of the salts resulted in a decrease in the rheological properties of the mud samples. This indicates that with the monovalent and divalent salt contamination, there is a significant decline in the performance of drilling mud since the salts affect the dispersion, hydration and flocculation behaviour of the particles. The effect was more profound with CaCl2 and MgCl2 salts than the KCl salt.


2019 ◽  
Vol 11 (23) ◽  
pp. 6714 ◽  
Author(s):  
Hany Gamal ◽  
Salaheldin Elkatatny ◽  
Salem Basfar ◽  
Abdulaziz Al-Majed

The design of drilling fluids is very important for the drilling operation success. The rheological properties play a key role in the performance of the drilling fluid. Therefore, studying the mud rheological properties of the water-based drilling fluid based on bentonite is essential. The main objectives of this study are to address the effect of pH changes on the rheological and filtration properties of the water-based drilling fluid based on bentonite and to provide a recommended pH range for this drilling fluid for a safe and high-performance drilling operation. Different samples of the water-based drilling fluid based on bentonite with different pH values were prepared, and the rheological properties such as plastic viscosity, yield point, and gel strength were measured. After that, the filtration test was performed under 300 psi differential pressure and 200 °F. The pH for the water-based drilling fluid based on bentonite significantly affects the mud rheology. The shear stress and shear rate relation were varying with the change in the pH. Increasing the pH from 8 to 12 resulted in decreasing the plastic viscosity by 53% and the yield point by 82%, respectively. The ratio of yield point / plastic viscosity was 1.4 for pH of 8 while it decreased to 0.5 for a pH of 11 and 12. There was a significant decrease in the gel strength readings by increasing the pH. The filtrate volume and filter cake thickness increased by increasing pH. The filtration volume increased from 9.5 cm3 to 12.6 cm3 by increasing the pH from 9 to 12. The filter cake thickness was 2 mm at 9 pH, while it was increased to 3.6 mm for 12 pH. It is recommended from the results to keep the pH of water-based drilling fluid based on bentonite in the range of 9 to 10 as it provides the optimum mud rheological and filtration properties. The findings of this study illustrated that keeping the pH in the range of 9 to 10 will reduce the plastic viscosity that will help in increasing the rate of penetration and reducing the required pump pressure to circulate the mud to the surface which will help to sustain the drilling operation. In addition, reducing the filtrate volume will produce a thin filter cake which will help in avoiding the pipe sticking and protect the environment. In general, optimizing the pH of the water-based drilling fluid based on bentonite in the range of 9 to 10 will improve the drilling operation and minimize the total cost.


Author(s):  
Ghofran F. Al-Ghanimi ◽  
Nada S. Al-Zubaidi

Choosing an adequate drilling fluid is of paramount importance in drilling operations. Thus, controlling the drilling fluid properties is by means of the appropriate selection of drilling fluid components of base fluids, solids, and additives to preserve drilling fluid properties. The aim of this study is to use the available and low cost Iraq's mineral resources. One of these minerals is presented by the Iraqi calcium montmorillonite clay (Ca-bentonite) was obtained from Wadi Bashera / Western Desert /Anbar Governorate to be used as an alternative active solid instead of spending hard currency on importing commercial clay. This study was grouped into two workflows. In the first workflow, XRF and XRD analyzes were performed after grinding the Iraqi raw bentonite rocks and screening it to separate the impurities in order to find out the chemical composition (oxides) and mineral composition (clay and non-clay minerals). The XRF analysis showed that Iraqi bentonite has Al2O3 to SiO2 ratio of 0.3623 which is approximately similar to 0.3455 that obtained by Wyoming bentonite. The XRD analysis detected that Iraqi bentonite is mainly composed of montmorillonite and palygorskite which form the predominant constituents of clay minerals, whereas quartz and gypsum are presented as non-clay minerals. The experimental work is the second work flow of this study in which the rheological and filtration properties, in addition pH value and stability of 3wt. % of Iraqi bentonite fresh water based fluid were tested. Two types of additives with different concentrations were used, soda ash and caustic soda. The results of the experimental work showed that, adding different concentrations of soda ash resulted in an increase in the rheological properties of 3wt. % Iraqi bentonite fresh water based drilling fluid. Soda ash within the range of 0.35 to 0.57g /350 cc water (0.35 to 0.57 lb/bbl) can be used to upgrade Iraqi bentonite. Caustic soda addition within range 0.2 to 0.4 g/350 cc water (0.2- 0.4 lb/bbl) caused an increase in the rheological properties of fresh water based drilling fluid prepared with 3 wt. % of Iraqi bentonite. Combination of soda ash and caustic soda with different concentrations revealed better results than that obtained from each additive alone. An improvement in the filtration properties has been also achieved by adding soda ash and caustic soda into the drilling fluid. Also, an enhancement was achieved in stability from 65 % to 98 % with soda ash and caustic soda additions. This study presents an efficient and cost-effective local bentonite for meeting the required drilling fluid rheological properties.


Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1377
Author(s):  
Musaab I. Magzoub ◽  
Raj Kiran ◽  
Saeed Salehi ◽  
Ibnelwaleed A. Hussein ◽  
Mustafa S. Nasser

The traditional way to mitigate loss circulation in drilling operations is to use preventative and curative materials. However, it is difficult to quantify the amount of materials from every possible combination to produce customized rheological properties. In this study, machine learning (ML) is used to develop a framework to identify material composition for loss circulation applications based on the desired rheological characteristics. The relation between the rheological properties and the mud components for polyacrylamide/polyethyleneimine (PAM/PEI)-based mud is assessed experimentally. Four different ML algorithms were implemented to model the rheological data for various mud components at different concentrations and testing conditions. These four algorithms include (a) k-Nearest Neighbor, (b) Random Forest, (c) Gradient Boosting, and (d) AdaBoosting. The Gradient Boosting model showed the highest accuracy (91 and 74% for plastic and apparent viscosity, respectively), which can be further used for hydraulic calculations. Overall, the experimental study presented in this paper, together with the proposed ML-based framework, adds valuable information to the design of PAM/PEI-based mud. The ML models allowed a wide range of rheology assessments for various drilling fluid formulations with a mean accuracy of up to 91%. The case study has shown that with the appropriate combination of materials, reasonable rheological properties could be achieved to prevent loss circulation by managing the equivalent circulating density (ECD).


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1644
Author(s):  
Camilo Pedrosa ◽  
Arild Saasen ◽  
Bjørnar Lund ◽  
Jan David Ytrehus

The cuttings transport efficiency of various drilling fluids has been studied in several approaches. This is an important aspect, since hole cleaning is often a bottleneck in well construction. The studies so far have targeted the drilling fluid cuttings’ transport capability through experiments, simulations or field data. Observed differences in the efficiency due to changes in the drilling fluid properties and compositions have been reported but not always fully understood. In this study, the cuttings bed, wetted with a single drilling fluid, was evaluated. The experiments were performed with parallel plates in an Anton Paar Physica 301 rheometer. The results showed systematic differences in the internal friction behaviors between tests of beds with oil-based and beds with water-based fluids. The observations indicated that cutting beds wetted with a polymeric water-based fluid released clusters of particles when external forces overcame the bonding forces and the beds started to break up. Similarly, it was observed that an oil-based fluid wetted bed allowed particles to break free as single particles. These findings may explain the observed differences in previous cutting transport studies.


Sign in / Sign up

Export Citation Format

Share Document