scholarly journals Monoclonal antibodies used for management of hematological disorders

2021 ◽  
Vol 1 ◽  
pp. 12-21
Author(s):  
Kanjaksha Ghosh ◽  
Kinjalka Ghosh

Objectives: Monoclonal antibodies (MAs) are increasingly becoming part of therapeutic armamentarium for hematologists and hemato-oncologists. There is paucity of review on majority of these antibodies in one place. The objective of this review is an attempt to fill the gap in paucity of review on majority of these monoclonal antibodies (MAs) in one place. Material and Methods: ‘Pubmed’ and ‘Scopus’ database was explored focusing on monoclonal antibodies (MAs) in clinical hematological practice. Emphasis was given to the more recently published review articles on different monoclonal antibodies (MAs). Results: In the present review, a total of 23 different monoclonal antibodies (MAs) were discussed; some are very frequently used and some rarely. Monoclonal antibodies (MAs) are used for treatment of diverse hematological conditions, i.e. malignant and benign disorders and at various phases of stem cell transplantation. These antibodies were used either alone or in combination with various chemotherapeutic agents, targeted small molecules or as immunoconjugates. Some of the side effect profiles of these antibodies were common and some were unique to the particular monoclonal antibody (MA). Unusual infections or organ dysfunctions were noted. Improved function of antibodies by protein engineering is also advancing rapidly. Dosage, frequency and route of administration depended on the convenience and condition for which the antibody is used. Conclusion: Monoclonal antibodies (MAs) are going to stay for hematological practice. Some amount of familiarity with their usage, advantages, disadvantages and side effects are essential in clinical practice.

1998 ◽  
Vol 11 (1) ◽  
pp. 54-71
Author(s):  
Peggy Bush

Biotechnology has contributed to important advances in the healthcare field. Products include various hormones, enzymes, cytokines, vaccines, and monoclonal antibodies, with use in diverse therapeutic areas. The majority of approved biotechnology-derived therapeutic products are recombinant proteins. Many have orphan drug status and, therefore, are used in relatively small patient populations. Newer generation biotechnology products are likely to include small molecules, gene therapy products, and increased numbers of vaccines and monoclonal antibody products. Biotechnology provides the means to develop diverse, innovative, and effective approaches to the prevention, treatment, and cure of human disease.


2000 ◽  
Vol 41 (4-5) ◽  
pp. 301-308 ◽  
Author(s):  
N. Noda ◽  
H. Ikuta ◽  
Y. Ebie ◽  
A. Hirata ◽  
S. Tsuneda ◽  
...  

Fluorescent antibody technique by the monoclonal antibody method is very useful and helpful for the rapid quantification and in situ detection of the specific bacteria like nitrifiers in a mixed baxterial habitat such as a biofilm. In this study, twelve monoclonal antibodies against Nitrosomonas europaea (IFO14298) and sixteen against Nitrobacter winogradskyi (IFO14297) were raised from splenocytes of mice (BALB/c). It was found that these antibodies exhibited little cross reactivity against various kinds of heterotrophic bacteria. The direct cell count method using monoclonal antibodies could exactly detect and rapidly quantify N. europaea and N. winogradskyi. Moreover, the distribution of N. europaea and N. winogradskyi in a biofilm could be examined by in situ fluorescent antibody technique. It was shown that most of N. winogradskyi existed near the surface part and most of N. europaea existed at the inner part of the polyethylene glycol (PEG) gel pellet, which had entrapped activated sludge and used in a landfill leachate treatment reactor. It was suggested that this monoclonal antibody method was utilized for estimating and controlling the population of nitrifying bacteria as a quick and favorable tool.


2020 ◽  
Vol 20 (16) ◽  
pp. 1895-1907
Author(s):  
Navgeet Kaur ◽  
Anju Goyal ◽  
Rakesh K. Sindhu

The importance of monoclonal antibodies in oncology has increased drastically following the discovery of Milstein and Kohler. Since the first approval of the monoclonal antibody, i.e. Rituximab in 1997 by the FDA, there was a decline in further applications but this number has significantly increased over the last three decades for various therapeutic applications due to the lesser side effects in comparison to the traditional chemotherapy methods. Presently, numerous monoclonal antibodies have been approved and many are in queue for approval as a strong therapeutic agent for treating hematologic malignancies and solid tumors. The main target checkpoints for the monoclonal antibodies against cancer cells include EGFR, VEGF, CD and tyrosine kinase which are overexpressed in malignant cells. Other immune checkpoints like CTLA-4, PD-1 and PD-1 receptors targeted by the recently developed antibodies increase the capability of the immune system in destroying the cancerous cells. Here, in this review, the mechanism of action, uses and target points of the approved mAbs against cancer have been summarized.


2020 ◽  
Vol 7 (2) ◽  
pp. 121-133
Author(s):  
Ayesha Akhtar ◽  
Shivakumar Arumugam ◽  
Shoaib Alam

Background:: Protein A affinity chromatography is often employed as the most crucial purification step for monoclonal antibodies to achieve high yield with purity and throughput requirements. Introduction:: Protein A, also known as Staphylococcal protein A (SPA) is found in the cell wall of the bacteria staphylococcus aureus. It is one of the first discovered immunoglobulin binding molecules and has been extensively studied since the past few decades. The efficiency of Protein A affinity chromatography to purify a recombinant monoclonal antibody in a cell culture sample has been evaluated, which removes 99.0% of feed stream impurities. Materials and Method:: We have systematically evaluated the purification performance by using a battery of analytical methods SDS-PAGE (non-reduced and reduced sample), Cation Exchange Chromatography (CEX), Size-exclusion chromatography (SEC), and Reversed phased-Reduced Chromatography for a CHO-derived monoclonal antibody. Results and Discussion:: The analytical test was conducted to determine the impurity parameter, Host Cell Contaminating Proteins (HCP). It was evaluated to be 0.015ng/ml after the purification step; while initially, it was found to be 24.431ng/ml. Conclusion:: The tests showed a distinct decrease in the level of different impurities after the chromatography step. It can be concluded that Protein A chromatography is an efficient step in the purification of monoclonal antibodies.


2021 ◽  
Vol 22 (6) ◽  
pp. 3166
Author(s):  
Jwala Priyadarsini Sivaccumar ◽  
Antonio Leonardi ◽  
Emanuela Iaccarino ◽  
Giusy Corvino ◽  
Luca Sanguigno ◽  
...  

Background: Monoclonal antibodies (mAbs) against cancer biomarkers are key reagents in diagnosis and therapy. One such relevant biomarker is a preferentially expressed antigen in melanoma (PRAME) that is selectively expressed in many tumors. Knowing mAb’s epitope is of utmost importance for understanding the potential activity and therapeutic prospective of the reagents. Methods: We generated a mAb against PRAME immunizing mice with PRAME fragment 161–415; the affinity of the antibody for the protein was evaluated by ELISA and SPR, and its ability to detect the protein in cells was probed by cytofluorimetry and Western blotting experiments. The antibody epitope was identified immobilizing the mAb on bio-layer interferometry (BLI) sensor chip, capturing protein fragments obtained following trypsin digestion and performing mass spectrometry analyses. Results: A mAb against PRAME with an affinity of 35 pM was obtained and characterized. Its epitope on PRAME was localized on residues 202–212, taking advantage of the low volumes and lack of fluidics underlying the BLI settings. Conclusions: The new anti-PRAME mAb recognizes the folded protein on the surface of cell membranes suggesting that the antibody’s epitope is well exposed. BLI sensor chips can be used to identify antibody epitopes.


Biomolecules ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 993
Author(s):  
Renuka Raman ◽  
Krishna J. Patel ◽  
Kishu Ranjan

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the etiological agent of the coronavirus disease 2019 (COVID-19) pandemic, which has been a topic of major concern for global human health. The challenge to restrain the COVID-19 pandemic is further compounded by the emergence of several SARS-CoV-2 variants viz. B.1.1.7 (Alpha), B.1.351 (Beta), P1 (Gamma) and B.1.617.2 (Delta), which show increased transmissibility and resistance towards vaccines and therapies. Importantly, there is convincing evidence of increased susceptibility to SARS-CoV-2 infection among individuals with dysregulated immune response and comorbidities. Herein, we provide a comprehensive perspective regarding vulnerability of SARS-CoV-2 infection in patients with underlying medical comorbidities. We discuss ongoing vaccine (mRNA, protein-based, viral vector-based, etc.) and therapeutic (monoclonal antibodies, small molecules, plasma therapy, etc.) modalities designed to curb the COVID-19 pandemic. We also discuss in detail, the challenges posed by different SARS-CoV-2 variants of concern (VOC) identified across the globe and their effects on therapeutic and prophylactic interventions.


1994 ◽  
Vol 21 (2) ◽  
pp. 171-178 ◽  
Author(s):  
Howard S. Rosenzweig ◽  
Girish N. Ranadive ◽  
Troy Seskey ◽  
Michael W. Epperly ◽  
William D. Bloomer

2013 ◽  
Vol 2013 ◽  
pp. 1-21 ◽  
Author(s):  
Giuseppe Sautto ◽  
Nicasio Mancini ◽  
Giacomo Gorini ◽  
Massimo Clementi ◽  
Roberto Burioni

More than 150 arboviruses belonging to different families are known to infect humans, causing endemic infections as well as epidemic outbreaks. Effective vaccines to limit the occurrence of some of these infections have been licensed, while for the others several new immunogens are under development mostly for their improvements concerning safety and effectiveness profiles. On the other hand, specific and effective antiviral drugs are not yet available, posing an urgent medical need in particular for emergency cases. Neutralizing monoclonal antibodies (mAbs) have been demonstrated to be effective in the treatment of several infectious diseases as well as in preliminaryin vitroandin vivomodels of arbovirus-related infections. Given their specific antiviral activity as well-tolerated molecules with limited side effects, mAbs could represent a new therapeutic approach for the development of an effective treatment, as well as useful tools in the study of the host-virus interplay and in the development of more effective immunogens. However, before their use as candidate therapeutics, possible hurdles (e.g., Ab-dependent enhancement of infection, occurrence of viral escape variants) must be carefully evaluated. In this review are described the main arboviruses infecting humans and candidate mAbs to be possibly used in a future passive immunotherapy.


1984 ◽  
Vol 98 (5) ◽  
pp. 1637-1644 ◽  
Author(s):  
R Mayne ◽  
H Wiedemann ◽  
M H Irwin ◽  
R D Sanderson ◽  
J M Fitch ◽  
...  

The location of the epitopes for monoclonal antibodies against chicken type IV and type V collagens were directly determined in the electron microscope after rotary shadowing of antibody/collagen mixtures. Three monoclonal antibodies against type IV collagen were examined, each one of which was previously demonstrated to be specific for only one of the three pepsin-resistant fragments of the molecule. The three native fragments were designated (F1)2F2, F3, and 7S, and the antibodies that specifically recognize each fragment were called, respectively, IA8 , IIB12 , and ID2 . By electron microscopy, monoclonal antibody IA8 recognized an epitope located in the center of fragment (F1)2F2 and in tetramers of type IV collagen at a distance of 288 nm from the 7S domain, the region of overlap of four type IV molecules. Monoclonal antibody IIB12 , in contrast, recognized an epitope located only 73 nm from the 7S domain. This result therefore provides direct visual evidence that the F3 fragment is located closest to the 7S domain and the order of the fragments must be 7S-F3-(F1)2F2. The epitope for antibody ID2 was located in the overlap region of the 7S domain, and often several antibody molecules were observed to binding to a single 7S domain. The high frequency with which antibody molecules were observed to bind to fragments of type IV collagen suggests that there is a single population of type IV molecules of chain organization [alpha 1(IV)]2 alpha 2(IV), and that four identical molecules must form a tetramer that is joined in an antiparallel manner at the 7S domain. The monoclonal antibodies against type V collagen, called AB12 and DH2 , were both found to recognize epitopes close to one another, the epitopes being located 45-48 nm from one end of the type V collagen molecule. The significance of this result still remains uncertain, but suggests that this site is probably highly immunoreactive. It may also be related to the specific cleavage site of type V collagen by selected metalloproteinases and by alpha-thrombin. This cleavage site is also known to be located close to one end of the type V molecule.


2006 ◽  
Vol 13 (3) ◽  
pp. 420-422 ◽  
Author(s):  
S. E. Burastero ◽  
C. Paolucci ◽  
D. Breda ◽  
G. Monasterolo ◽  
R. E. Rossi ◽  
...  

ABSTRACT The Bühlmann CAST 2000 enzyme-linked immunosorbent assay is a potentially useful assay for measuring sulfidoleukotrienes released in vitro by allergen-challenged basophils. However, we observed that the positive-control reagent yielded positive signals in cell-free systems. These false-positive results depended on using a mouse anti-FcεRI monoclonal antibody and were prevented by degranulation-inducing reagents other than mouse monoclonal antibodies.


Sign in / Sign up

Export Citation Format

Share Document