scholarly journals Water transport and energetic of North European part of Russia (a review)

2017 ◽  
pp. 75-85
Author(s):  
N.N. Filatov ◽  
◽  
V.A. Karpechko ◽  
A.V. Litvinenko ◽  
M.S. Bogdanova ◽  
...  

The article deals with the problem of water transport and energy development, and their peculiarities in the north of European Russia. The specific features of water transport and energy were considered for each of the regions. The main challenges and possible solutions for the development of water supply were studied. Inland waterways in the northern part of European Russia constitute about 13% of the length of Russia’s inland waterways. The region has considerable potential for the development of inland waterways. The main problem for inland water transport lies in an unsatisfactory condition of the waterways. Water transport cannot be developed further without addressing the shortage of new ports and docks, as well as without the introduction of new cargo and passenger vessels. The region has significant untapped hydropower potential. The hydropower characteristics of watercourses typical of the north of European Russia allow for the generation of electricity by small hydropower plants, fully satisfying the needs of regions whose economies are focused on agricultural and forest industry. Revival of the small hydropower industry will help to both avoid energy deficit in remote areas and reduce the burden on the environment. Some problems of water resources of the north of European Russia are associated with partly outdated laws and regulations, flaws of water management systems, their lack of compliance with the current and future economic development of the country, as well as the requirements of environmental safety.

Energies ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 2103 ◽  
Author(s):  
Martin Polák

Pumps as turbines (PAT) are used as an alternative to water turbines in small hydropower plants. The same devices can also be used for energy recovery in water distribution networks. They can replace pressure reduction valves that often lead to energy loss. However, PATs lack the parts that regulate flow so that when a hydropower potential change occurs, efficiency is reduced, as is economic gain. This article summarizes the influence of changing hydropower potential on PAT efficiency and presents comparisons of experimental results with the commonly used predictive model stemming from the theory of physical similarity, which presumes constant PAT efficiency. Our research indicates that the deviation between the model and the real power output calculation at varying potentials was minimal. Similarly, the affine parabola can be used to determine the relationship between total head and flow rate. Other relationships differ from reality the more the PAT efficiency changes. The flow rate and total head dependence on shaft speed are the main factors when setting the optimum operational parameters at varying hydropower potentials. Therefore, a change in efficiency must be included in predictive calculations to correctly optimize PAT operation. The problem is that a change in efficiency cannot be reliably predicted in advance, especially in the case of small-scale devices. For this reason, further research on the issue of changes in PAT efficiency is necessary.


Challenges ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 17 ◽  
Author(s):  
Ourania Tzoraki

In arid and semi-arid parts of the world, river exploitation is intensive, involving water storage for irrigation or hydropower generation. In Greece, 100 small hydropower plants (SHPs) take advantage of less than 10% of the hydropower potential of low flow streams (<2 m3/s), a very small amount in relation to the 70% of the European Union. The energy policy of complete decarbonization of the country by 2023 on a national scale opens the road for new investments in SHP projects, especially in intermittent-flow streams of the Greek islands. Simulated flows by the Modello Idrologico SemiDistribuito in continuo (MISDc model) are used to construct the annual flow duration curve (FDC) to study and assess the hydropower potential of an intermittent stream (Tsiknias river, Lesvos, Greece). For Tsiknias River, but also for six other intermittent-flow rivers of Crete island, the capacity factor (CF), which represents the mean annual power of the hydropower plant, should remain >75% to exploit the river’s potential. The FDC and CF are essential in designing SHP projects in intermittent-flow streams with long no-flow periods. The development of public participatory approaches and a closer cooperation among policy makers and stakeholders should work to promote hydropower exploitation and accelerate licensing procedures.


2013 ◽  
Vol 23 ◽  
pp. 341-349 ◽  
Author(s):  
Milena Panić ◽  
Marko Urošev ◽  
Ana Milanović Pešić ◽  
Jovana Brankov ◽  
Željko Bjeljac

2020 ◽  
Vol 178 ◽  
pp. 01036
Author(s):  
Ishembek Kadyrov ◽  
Nurzat Karaeva ◽  
Zheenbek Andarbekov ◽  
Bakytuulu Azamat ◽  
Oleg Fedorov ◽  
...  

The article presents indicators of the hydropower potential of Kyrgyzstan, shows the share of small hydropower plants in the production of electric energy in the energy sector of the republic, reveals the problematic issues that need to be revealed in this work. A brief description of the existing automatic voltage regulation system and automatic field blanking system is given. Based on the analysis of existing systems, their shortcomings were identified and the main functions formulated for automatic voltage regulation systems in both static and dynamic modes associated with starting and stopping the generator, loading and dumping, as well as protective measures taken to ensure reliability operation of the hydraulic unit. The result of the research is the development of the main functional blocks in the system of automatic voltage regulation with a thyristor pathogen and a brief explanation of their work. The synthesis technique of the excitation current regulator of a synchronous generator and the main indicators obtained in the modernization process are shown. In conclusion, all the functions inherent in the modernized system for automatically controlling the excitation of a synchronous generator, aimed at the safe operation of the hydraulic unit, are noted.


2020 ◽  
Vol 15 (3) ◽  
pp. 267-276 ◽  
Author(s):  
Kyu Kyu Thin ◽  
Win Win Zin ◽  
Zin Mar Lar Tin San ◽  
Akiyuki Kawasaki ◽  
Abdul Moiz ◽  
...  

The need for electricity is rapidly increasing, especially in developing countries. There is vast hydropower potential existing globally that has not yet been explored. This could be the only solution to solve future global power shortage. Hydropower is a clean and renewable source of energy because it does not exploit the use of water. However, using the conventional approach to harness hydropower results in several challenges. It is difficult to identify suitable sites and assess site potential during the planning stage of hydropower projects. In this study, run-of-river hydropower potential for the Myitnge River Basin was estimated by intergrating a Geographic Information System (GIS) and Soil & Water Assessement Tool (SWAT) model. A GIS based tool was developed using Python to spot the potential locations of the hydropower plants. The hydrological model (SWAT) was designed in order to obtain the values of monthly discharge for all potential hydropwer sites. The flow duration curves at potential locations were developed and the design discharge for hydropower was identified. Forty-four run-of-river (ROR) type potential hydropower sites were identified by considering only the topographic factors. After simulation with SWAT model, twenty potential sites with a hydropower generation potential of 292 MW were identified. Currently, only one 790 MW Yeywa Hydropower Plant, which is the largest plant in Myanmar, exists in the Myitnge River Basin. The amount of estimated power generated from ROR may increase the existing power system of Myitnge Basin by 36%. This study will assist stakeholders in the energy sector to optimize the available resources to select appropiate sites for small hydropower plants with high power potential.


2015 ◽  
Vol 725-726 ◽  
pp. 285-292 ◽  
Author(s):  
Nikolay Arefiev ◽  
Nikolay Badenko ◽  
Timofey Ivanov ◽  
Sofiya Kotlyar ◽  
Olga Nikonova ◽  
...  

Current paper is dedicated to the analysis of world experience in automated estimations of hydropower potential and identification of places for prospective small hydropower plants construction. Emphasis is put on initial data, methodology and software used by researchers worldwide.


Processes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 266
Author(s):  
Md Rakibuzzaman ◽  
Sang-Ho Suh ◽  
Hyoung-Ho Kim ◽  
Youngtae Ryu ◽  
Kyung Yup Kim

Discharge water from fish farms is a clean, renewable, and abundant energy source that has been used to obtain renewable energy via small hydropower plants. Small hydropower plants may be installed at offshore fish farms where suitable water is obtained throughout the year. It is necessary to meet the challenges of developing small hydropower systems, including sustainability and turbine efficiency. The main objective of this study was to investigate the possibility of constructing a small hydropower plant and develop 100 kW class propeller-type turbines in a fish farm with a permanent magnet synchronous generator (PMSG). The turbine was optimized using a computer simulation, and an experiment was conducted to obtain performance data. Simulation results were then validated with experimental results. Results revealed that streamlining the designed shape of the guide vane reduced the flow separation and improved the efficiency of the turbine. Optimizing the shape of the runner vane decreased the flow rate, reducing the water power and increasing the efficiency by about 5.57%. Also, results revealed that tubular or cross-flow turbines could be suitable for use in fish farm power plants, and the generator used should be waterproofed to avoid exposure to seawater.


Water ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 433
Author(s):  
Laima Česonienė ◽  
Midona Dapkienė ◽  
Petras Punys

Hydropower plants produce renewable and sustainable energy but affect the river’s physico-chemical characteristics and change the abundance and composition of the aquatic organisms. The impact of large HPPs on the ecological conditions of surface water bodies have been extensively studied, but less attention has been paid to environmental impact studies of small hydropower plants (SHPs). The impact of hydropeaking on both the river flow regime and ecosystems has been well-studied for peaking mode plants, mainly medium to large-sized ones. However, for small hydroelectric power plants, and especially for those in lowland rivers, the available information on water quality, benthic macroinvertebrates communities and fish abundance, and biomass is not sufficient. Ten small hydropower plants were selected, and the ecological status of water bodies was assessed in different parts of Lithuania. The studies were performed at the riverbed upstream from the SHPs, where the hydrological regime has not changed, and downstream from the SHPs. It was found that the small hydropower plants do not affect the physico-chemical values of the water quality indicators. This study demonstrated that the total number of benthic macroinvertebrates taxa (TS) is influenced by the concentration of nitrogen and suspended solids, the water flow, the river area, and the current speed; the number of EPT (Ephemeroptera (mayflies), Plecoptera (stoneflies), and Trichoptera (caddisflies)) taxa is influenced by the concentration of nitrogen and suspended solids. The studied indicators do not have a significant impact on biomass. The SHPs affect the fish abundance and biomass. The Lithuanian fish index (LFI) is influenced by the average depth and area of the river. Some SHPs operating in lowland areas may yield somewhat significant hydrograph ramping but more detailed investigation is needed to support the significance of this impact on the biological indices.


Sign in / Sign up

Export Citation Format

Share Document