scholarly journals 3D Natural State Modeling of Mount Iyang-Argopuro Geothermal Area, East Java, Indonesia

Author(s):  
Dewi Asmorowati ◽  
Allen Haryanto Lukmana ◽  
Rizqi Mahfudz Prasetyo

Mount Iyang-Argopuro is one of the geothermal working areas in the East Java. Mount Iyang-Argopuro has the potential of 185 MWe of reserves and 110 MWe of resources.  It is estimated to have a liquid dominated reservoir with temperature up to 250-275 oC. An early 3D natural state numerical model of Mount Iyang-Argopuro Field is created using TOUGH2 simulator in order to identify the undisturbed condition of reservoir and resource assessment. Since Mount Iyang-Argopuro geothermal area is still in the exploration stage, the model created based on based on geological, geophysical, and geochemical data. The model has an area 14 km x 8.2 km and 9180 m in thickness. The model consists of 7410 of rectangular cell blocks with the roughest cell size is 1000 m x 1000 m and the finest is 200 m x 500 m. The model is verified by matching the model temperature and pressure profiles to the calculated geothermometer temperature and pressure, which shows good match enough.

2014 ◽  
Vol 960-961 ◽  
pp. 551-554
Author(s):  
Lei Huang ◽  
Yang Cui

In this paper, Couette flow is mainly discussed by studying the general flow behaviour mechanism and importing the velocity slip and temperature jump boundary condition. By analyzing velocity, temperature and pressure profiles at different Knudsen numbers, we concluded that Couette flow is driven by shear stress. The shear stress lies in stream direction. Viscous heat causes the increasing of the fluid’s temperature. With the increasing of Knudsen numbers, the increasing speed increases. It’s in the beginning of transition region that the heat flux has the maximum.


2021 ◽  
Author(s):  
J. Houston Miller ◽  
Monica Flores ◽  
David Bomse

<div>We present an analysis of historic pressure and temperature profiles from radiosonde</div><div>launches that will be used in retrieval of mixing fractions for greenhouse gases (GHGs, including</div><div>carbon dioxide, methane, and water vapor) in Laser Heterodyne Radiometry (LHR) data. With</div><div>over 2,700 stations worldwide, the global coverage for weather balloon observations is</div><div>extensive. Radiosonde stations included in the Integrated Global Radiosonde Archive (IGRA),</div><div>are launched simultaneously twice daily at 00:00 and 12:00 UTC. Global stations span all time</div><div>zones in both the Northern and Southern Hemisphere.</div><div> </div><div>Mesa Photonics and George Washington University are developing a variant of LHR</div><div>known as Precision Heterodyne, Oxygen-Corrected Spectroscopy (PHOCS) that simultaneously</div><div>collects high-resolution, oxygen spectral line shape data. Because oxygen concentrations in the</div><div>troposphere and lower stratosphere are constant, these line shapes are uniquely sensitive to both</div><div>temperature and pressure profiles and constrained fitting of these line shapes enables more</div><div>precise GHG concentration retrievals.</div><div> </div><div>Our approach is to collect historic data over several years (typically the prior decade) for</div><div>a particular date window surrounding a PHOCS measurement date for stations across the globe,</div><div>and mine this data for observation probability distributions as a function of level altitude, local</div><div>time of day of launch, latitude, etc. These distributions will then be used as Bayesian priors to</div><div>constrain temperature and pressure fits during the oxygen spectral fitting routine. Subsequently,</div><div>these priors will be used to estimate uncertainties in vertically-resolved GHG mixing ratios.</div>


2019 ◽  
Vol 113 ◽  
pp. 01002
Author(s):  
Alessandro Vulpio ◽  
Nicola Casari ◽  
Mirko Morini ◽  
Michele Pinelli ◽  
Alessio Suman

Biomass gasification is regarded as one of the most promising technology in the renewable energy field. The outcome of such operation, i.e. the synfuel, can be exploited in several ways, for example powering engines and turbines, and is considered more flexible than the biomass itself. For this reason, a careful analysis of the gasification performance is of paramount importance for the optimization of the process. One of the techniques that can be used for such a purpose, is the numerical analysis. CFD is indeed a tool that can be of great help in the design and study of the operation of the gasifier, allowing for an accurate prediction of the operating parameters. In this work, a downdraft gasifier is considered, and the biomass is made of wood chip. The present analysis is devoted to build the numerical model and simulate all the reactions that happen inside an actual gasifier, considering the drying of the wood chip, heating, pyrolysis, and combustion. Good match with experimental results is found, making the numerical model here presented a reliable virtual test bench where investigating the effects of variation in the working parameters.


2019 ◽  
Vol 11 (6) ◽  
pp. 659 ◽  
Author(s):  
Gennadii G Matvienko ◽  
and Alexander Ya Sukhanov

Greenhouse gas concentrations are increasing over the past few decades, creating the need to measure their concentration with high accuracy, including for determining their trends, sources, and sinks. In this regard, various methods of regional and global control are being developed. One of the measuring methods is passive satellite method, but they allow for you to get data mainly during the day and outside the poles of the Earth. Another method is active lidar; they require the consideration of various aspects that are related to the technical characteristics of the lidar and methods for solving inverse problems. This article discusses the possibility of using lidars for sensing carbon dioxide from space (orbit 450 km) and from a height of 10 km and 23 km, which presumably corresponds to the aircrafts and balloons. As a method of solving the inverse problem, the method of fully connected neural networks with three layers and pre-training of first layer is considered, allowing for the application of additional data, including the IPDA (Integrated Path Differential Absorption) signal, the scattered DIAL (Differential Absorption Lidar) signal, temperature, and pressure profiles. These estimates show the possibility of measuring the average concentration from an orbit height of 450 km with an error of 0.16%, a resolution of 60 km, with a 50 mJ laser pulse energy, and 1 m diameter telescope. It is also shown that it is possible to obtain the concentration profile, including the near-surface concentration with an error of 2 ppm.


2013 ◽  
Vol 66 (3) ◽  
Author(s):  
Mohamad Ali Ahmad ◽  
Salmiah Kasolang ◽  
R. S. Dwyer-Joyce ◽  
Aidah Jumahat

The effects of oil supply pressure on the temperature and pressure at different groove locations on a hydrodynamic journal bearing were investigated. A journal with a diameter of 100 mm and a ½ length-to-diameter ratio was used. The supply pressure was set to 0.2, 0.5, and 0.7 MPa at seven different groove locations, namely, -45°, -30°, -15°, 0°, +15°, +30°, and +45°. Temperature and pressure profiles were measured at speed values of 300, 500, and 800 rpm with 10 kN radial load. The results show that the change in oil supply pressure simultaneously reduced the temperature and increased the pressure profile.


2013 ◽  
Vol 53 (1) ◽  
pp. 285
Author(s):  
Emile Barrett ◽  
Imran Abbasy ◽  
Chii-Rong Wu ◽  
Zhenjiang You ◽  
Pavel Bedrikovetsky

Estimation of rate profile along the well is important information for reservoir characterisation since it allows distinction of the production rates from different layers. The temperature and pressure sensors in a well are small and inexpensive; while flow meters are cumbersome and expensive, and affect the flow in the well. The method presented in this peer-reviewed paper shows its significance in predicting the gas rate from temperature and pressure data. A mathematical model for pressure and temperature distributions along a gas well has been developed. Temperature and pressure profiles from nine well intervals in field A (Cooper Basin, Australia) have been matched with the mathematical model to determine the flow rates from different layers in the well. The presented model considers the variables as functions of thermal properties at each location, which is more accurate and robust than previous methods. The results of tuning the mathematical model to the field data show good agreement with the model prediction. Simple and robust explicit formulae are derived for the effective estimation of flow rate and thermal conductivity in gas wells. The proposed approach has been applied to determine the well gas rate and formation thermal conductivity from the acquired well pressure and temperature data in field A. It allows for recommending well stimulation of layers with low production rates.


2006 ◽  
Vol 129 (2) ◽  
pp. 382-393 ◽  
Author(s):  
M. D. Barringer ◽  
K. A. Thole ◽  
M. D. Polanka

Improving the performance and durability of gas turbine aircraft engines depends highly on achieving a better understanding of the flow interactions between the combustor and turbine sections. The flow exiting the combustor is very complex and it is characterized primarily by elevated turbulence and large variations in temperature and pressure. The heat transfer and aerodynamic losses that occur in the turbine passages are driven primarily by these spatial variations. To better understand these effects, the goal of this work is to benchmark an adjustable turbine inlet profile generator for the Turbine Research Facility (TRF) at the Air Force Research Laboratory. The research objective was to experimentally evaluate the performance of the nonreacting simulator that was designed to provide representative combustor exit profiles to the inlet of the TRF turbine test section. This paper discusses the verification testing that was completed to benchmark the performance of the generator. Results are presented in the form of temperature and pressure profiles as well as turbulence intensity and length scale. This study shows how a single combustor geometry can produce significantly different flow and thermal field conditions entering the turbine. Engine designers should place emphasis on obtaining accurate knowledge of the flow distribution within the combustion chamber. Turbine inlet conditions with significantly different profile shapes can result in altered flow physics that can change local aerodynamics and heat transfer.


Author(s):  
Ritu P. Marpu ◽  
Chad H. Custer ◽  
Venkataramanan Subramanian ◽  
Jonathan M. Weiss ◽  
Kenneth C. Hall

An unsteady simulation of a two-stage, cooled, high pressure turbine cascade is achieved by applying the harmonic balance method, a mixed time domain and frequency domain computational fluid dynamic technique for efficiently solving periodic unsteady flows. A comparison of computed temperature and pressure profile predictions generated using the harmonic balance method and a conventional steady mixing plane analysis is presented. The predicted temperature and pressure profiles are also compared to experimental data at the stage exit plane. The harmonic balance solver is able to efficiently model unsteady flows caused by wake interaction and secondary flow effects due to cooling flows. It is demonstrated that modeling the unsteady effects is critical to the accurate prediction of time-averaged flow field quantities, particularly for cooled machines.


Sign in / Sign up

Export Citation Format

Share Document