scholarly journals On the Influence of Manufacturing Strategy of 3D-Printed Polymer Substrates on Cold Spray Deposition

2021 ◽  
Author(s):  
Antonio Viscusi ◽  
Antonello Astarita ◽  
Domenico Borrelli ◽  
Antonio Caraviello ◽  
Luigi Carrino ◽  
...  

PMCs are anisotropic and heterogeneous structures with excellent performances in terms of mechanical strength and stiffness, coupled with reduced weight, widely used in engineering sectors. The use of PMCs can be further extended by improving their surface properties such as electrical conductivity, erosion, radiation and lightning protection. In this context, the surface metallization seems to be best solution. In particular, the cold spray (CS) technique candidates as a potential method for the manufacturing of a metal coating on PMCs’ surface. However, the design and the manufacturing methods of PMCs can play a crucial role for an effective metallization through CS. The additive manufacturing technologies for composite materials can be used to manufacture customized reinforced polymer-based panels, like PMCs; the most common method for printing them is the Fused Filament Fabrication (FFF) technique which relies on the thermal extrusion of a thermoplastic feedstock from a mobile heated nozzle. Therefore, this research activity aims to manufacture customized PMCs panels by using FFF technology for the substrate and the cold spray technique for the metallization in order to study the influence of the substrate manufacturing strategy on CS deposition process. For this purpose, three kind of 3D-printed PMCs were manufactured through the FFF technology by varying the percentage fill of the Onyx polymeric matrix and aluminum powders were sprayed on the substrates with a low-pressure cold spray (LPCS) system; both FFF and CS process parameters were varied to study the process in its wholeness. Microscope analyses were carried out to analyze the influence of the manufacturing strategy on the coating quality.

2021 ◽  
Author(s):  
Roberta Della Gatta ◽  
Antonello Astarita ◽  
Domenico Borrelli ◽  
Antonio Caraviello ◽  
Francesco Delloro ◽  
...  

Composite materials are widely used as main parts and structural components in different fields, especially for automotive and military applications. Although these materials supply different advantages comparing to the metals, their implementation in engineering applications is limited due to low electrical and thermal properties and low resistance to erosion. To enhance these above-mentioned properties, the metallization of composite materials by creating a thin metal film on their surface can be achieved. Among different coating deposition techniques, Cold Spray appears to be the most suitable one for the metallization of temperature-sensitive materials such as polymers and composites with a thermoplastic matrix. This process relies on kinetic energy for the formation of the coating rather than on thermal energy and consequent erosion and degradation of the polymer-based composite can be avoided. In the last years, a new method to produce composite materials, as known as Fused Filament Fabrication (FFF), has been developed for industrial applications. This technique consists of a 3D printing process that involves the thermal extrusion of thermoplastic polymer and fibers in the form of filaments from a heated mobile nozzle. The implementation of this new technique is leading to the manufacturing of customized composite materials for the cold spray application. In the presented experimental campaign, Onyx material is used as a substrate. This material is made of Nylon, a thermoplastic matrix, and chopped carbon fibers randomly dispersed in it. Aluminum powders were cold sprayed on the Onyx substrate with a low-pressure cold spray (LPCS) system. This study aims to investigate the possibility of the metalizing 3D-printed composite material by cold spray technology. For this purpose, optical and microscopical analyses are carried out. Based on the results, the feasibility of the process and the influence of the morphology of the substrate are discussed, and optimal spraying conditions are proposed.


Technologies ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 49
Author(s):  
Alessia Romani ◽  
Andrea Mantelli ◽  
Paolo Tralli ◽  
Stefano Turri ◽  
Marinella Levi ◽  
...  

Fused filament fabrication allows the direct manufacturing of customized and complex products although the layer-by-layer appearance of this process strongly affects the surface quality of the final parts. In recent years, an increasing number of post-processing treatments has been developed for the most used materials. Contrarily to other additive manufacturing technologies, metallization is not a common surface treatment for this process despite the increasing range of high-performing 3D printable materials. The objective of this work is to explore the use of physical vapor deposition sputtering for the chromium metallization of thermoplastic polymers and composites obtained by fused filament fabrication. The thermal and mechanical properties of five materials were firstly evaluated by means of differential scanning calorimetry and tensile tests. Meanwhile, a specific finishing torture test sample was designed and 3D printed to perform the metallization process and evaluate the finishing on different geometrical features. Furthermore, the roughness of the samples was measured before and after the metallization, and a cost analysis was performed to assess the cost-efficiency. To sum up, the metallization of five samples made with different materials was successfully achieved. Although some 3D printing defects worsened after the post-processing treatment, good homogeneity on the finest details was reached. These promising results may encourage further experimentations as well as the development of new applications, i.e., for the automotive and furniture fields.


Author(s):  
Jing Xie ◽  
Daniel Nelias ◽  
Hélène Walter-le Berre ◽  
Yuji Ichikawa ◽  
Kazuhiro Ogawa

Cold spray is a rapidly developing coating technology for depositing materials in the solid state. In this deposition process, the spray particles are accelerated to a high velocity by a high-speed gas flow, and then form a dense and high quality coating due to plastic deformation of particles impinged upon the solid surface of substrate. 2D and 3D modelling of particle impacting behaviours in cold spray deposition process by using ABAQUS/Explicit was conducted for four couples of materials (i.e. impacting particle/impacted substrate): copper/aluminium, aluminium/copper, copper/copper, and aluminium/aluminium. A systematic analysis of a single impact was carried out considering different parameters, such as the initial impact velocity, initial temperature and contact angle, which affect the deposition process and subsequently the mechanical properties of coating. Three numerical methods have been evaluated and their performances are discussed for various simulation settings: (i) modelling in a Lagrangian reference frame; (ii) modelling using adaptive remeshing in an Arbitrary Lagrangian Eulerian (ALE) reference frame; and (iii), modelling in a CEL reference frame. It is found that the Coupled Eulerian Lagrangian (CEL) method has more advantages to simulate the large deformation of materials, and is also more efficient to prevent the excessive distortion of the mesh. A comparison between simulation results and experimental data from the literature was performed. Nevertheless, the CEL method is implicitly isothermal for ABAQUS v6.10, whereas the modelling in the classical Lagrangian reference frame does include coupled thermo-mechanical effects with a local increase of the temperature near the interface — due to friction — and for the highly plastically deformed elements — due to the heat dissipation linked to plasticity. A local rise of temperature at the impact surface may also be observed for oblique impacts. Finally a first attempt to simulate the deposition of several particles is made with a 3D CEL model, resulting in the creation of porosity at the interface between particles.


Author(s):  
Daniel Nélias ◽  
Jing Xie ◽  
Hélène Walter-Le Berre ◽  
Yuji Ichikawa ◽  
Kazuhiro Ogawa

Materials ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3364
Author(s):  
Bahaa Shaqour ◽  
Inés Reigada ◽  
Żaneta Górecka ◽  
Emilia Choińska ◽  
Bart Verleije ◽  
...  

Additive manufacturing technologies have been widely used in the medical field. More specifically, fused filament fabrication (FFF) 3D-printing technology has been thoroughly investigated to produce drug delivery systems. Recently, few researchers have explored the possibility of directly 3D printing such systems without the need for producing a filament which is usually the feedstock material for the printer. This was possible via direct feeding of a mixture consisting of the carrier polymer and the required drug. However, as this direct feeding approach shows limited homogenizing abilities, it is vital to investigate the effect of the pre-mixing step on the quality of the 3D printed products. Our study investigates the two commonly used mixing approaches—solvent casting and powder mixing. For this purpose, polycaprolactone (PCL) was used as the main polymer under investigation and gentamicin sulfate (GS) was selected as a reference. The produced systems’ efficacy was investigated for bacterial and biofilm prevention. Our data show that the solvent casting approach offers improved drug distribution within the polymeric matrix, as was observed from micro-computed topography and scanning electron microscopy visualization. Moreover, this approach shows a higher drug release rate and thus improved antibacterial efficacy. However, there were no differences among the tested approaches in terms of thermal and mechanical properties.


2010 ◽  
Vol 654-656 ◽  
pp. 1880-1883 ◽  
Author(s):  
Kevin Spencer ◽  
Vladimir Luzin ◽  
Ming Xing Zhang

Cold spray coatings are considered promising for surface protection of light metal substrates but the mechanisms of bonding and coating build-up are still poorly understood and are the subject of continuing debate. A variety of coating/substrate combinations have been characterised in detail using electron microscopy to examine the nature of the interparticle and particle/substrate interfaces. Through-thickness residual stress profiles obtained via neutron diffraction show that the internal stress varies significantly depending on the coating materials. The work will present a picture of the cold spray deposition process using different material examples.


2010 ◽  
Vol 654-656 ◽  
pp. 898-901 ◽  
Author(s):  
Stefan Gulizia ◽  
A. Trentin ◽  
S. Vezzù ◽  
Silvano Rech ◽  
Peter King ◽  
...  

Cold spray is a solid state spray deposition process utilizing a supersonic De Laval nozzle to accelerate fine particles to high velocities. Particles plastically deform on impact to the substrate and to each other to create dense well adhered structures. In this study, the microstructure and mechanical properties of cold spray Titanium coatings deposited using nitrogen gas at different gas temperature and pressure were examined. In general, it was found that gas-atomised CP-titanium powder is capable of producing dense coating structures on aluminium alloy (Al6061) substrates. The micro-hardness, oxygen and nitrogen content of the coatings were found to be slightly higher than powder in the as-received condition. It was also found the coating residual stress was purely compressive when cold spray is conducted at high gas pressure and temperature.


2021 ◽  
Author(s):  
Alessia Serena Perna ◽  
Antonello Astarita ◽  
Domenico Borrelli ◽  
Antonio Caraviello ◽  
Francesco Delloro ◽  
...  

Polymer-based AM methods are the most mature additive technologies for their versatility and variety of products obtainable. The addition of fibre reinforcement can also confer to the manufactures produced good mechanical properties. Unfortunately, several applications are still precluded because polymers cannot guarantee appropriate electrical conductivity, erosion resistance and operating temperature. Aiming to overcome these issues, the metallization of the surfaces emerges as a possible solution. Unfortunately, thermoplastic polymers exhibit thermosensitive behaviour and run the risk of being damaged when traditional metallization techniques, which require the melting of metal powders which will act as a protective coating. For this reason, studies have focused on Cold Gas Dynamic Spray, an additive manufacturing technology, which exploits kinetic energy to favour the adhesion of metal particles rather than the increase in temperature. In this work, a first attempt is made to verify the feasibility of cold spray coatings on 3D printed composite substrates, produced by means of Fused Filament Fabrication (FFF) technique. FFF technology allows the deposition of two different types of filaments by using a double extruder. These composite fibres within 3D printed parts manage to give the object a resistance comparable to that of a metal part with lower production cost and a high degree of automation. These structures, made of ONYX, a Nylon matrix in which short carbon fibres are dispersed, and reinforced with long carbon fibres, are designed to better fit the CS deposition. Aluminium coatings have been produced and a characterization campaign has been carried on.


Sign in / Sign up

Export Citation Format

Share Document