Characterisation of Cold Spray Titanium Coatings

2010 ◽  
Vol 654-656 ◽  
pp. 898-901 ◽  
Author(s):  
Stefan Gulizia ◽  
A. Trentin ◽  
S. Vezzù ◽  
Silvano Rech ◽  
Peter King ◽  
...  

Cold spray is a solid state spray deposition process utilizing a supersonic De Laval nozzle to accelerate fine particles to high velocities. Particles plastically deform on impact to the substrate and to each other to create dense well adhered structures. In this study, the microstructure and mechanical properties of cold spray Titanium coatings deposited using nitrogen gas at different gas temperature and pressure were examined. In general, it was found that gas-atomised CP-titanium powder is capable of producing dense coating structures on aluminium alloy (Al6061) substrates. The micro-hardness, oxygen and nitrogen content of the coatings were found to be slightly higher than powder in the as-received condition. It was also found the coating residual stress was purely compressive when cold spray is conducted at high gas pressure and temperature.

2014 ◽  
Vol 59 (3) ◽  
pp. 879-886 ◽  
Author(s):  
M. Winnicki ◽  
T. Piwowarczyk ◽  
A. Małachowska ◽  
A. Ambroziak

Abstract The paper deals with effect of working gas pressure and temperature on surface stereometry of coatings deposited by low-pressure cold spray method. Examinations were focused on aluminium coatings which are commonly used to protect substrate against corrosion. A commercial Al spherical feedstock powder with admixture of Al2O3 (Al + 60vol.-% Al2O3), granulation -50+10 µm, was used to coat steel, grade S235JR. Thedeposited coatings were studied to determine their stereometry, i.e. roughness, transverse and longitudinal waviness, topography of surface and thickness as the functions of gas pressure and temperature. A profilometer and focal microscope were used to evaluate the stereometric properties. In order to reduce the number of variables, the remaining process parameters, i.e. shape and size of de Laval nozzle, nozzle-to-substrate distance, powder mass flow rate, linear velocity of spraying gun, were kept unchanged. The investigation confirmed influence of temperature and pressure on coating thickness as well as on the surface seterometry.


Author(s):  
Jing Xie ◽  
Daniel Nelias ◽  
Hélène Walter-le Berre ◽  
Yuji Ichikawa ◽  
Kazuhiro Ogawa

Cold spray is a rapidly developing coating technology for depositing materials in the solid state. In this deposition process, the spray particles are accelerated to a high velocity by a high-speed gas flow, and then form a dense and high quality coating due to plastic deformation of particles impinged upon the solid surface of substrate. 2D and 3D modelling of particle impacting behaviours in cold spray deposition process by using ABAQUS/Explicit was conducted for four couples of materials (i.e. impacting particle/impacted substrate): copper/aluminium, aluminium/copper, copper/copper, and aluminium/aluminium. A systematic analysis of a single impact was carried out considering different parameters, such as the initial impact velocity, initial temperature and contact angle, which affect the deposition process and subsequently the mechanical properties of coating. Three numerical methods have been evaluated and their performances are discussed for various simulation settings: (i) modelling in a Lagrangian reference frame; (ii) modelling using adaptive remeshing in an Arbitrary Lagrangian Eulerian (ALE) reference frame; and (iii), modelling in a CEL reference frame. It is found that the Coupled Eulerian Lagrangian (CEL) method has more advantages to simulate the large deformation of materials, and is also more efficient to prevent the excessive distortion of the mesh. A comparison between simulation results and experimental data from the literature was performed. Nevertheless, the CEL method is implicitly isothermal for ABAQUS v6.10, whereas the modelling in the classical Lagrangian reference frame does include coupled thermo-mechanical effects with a local increase of the temperature near the interface — due to friction — and for the highly plastically deformed elements — due to the heat dissipation linked to plasticity. A local rise of temperature at the impact surface may also be observed for oblique impacts. Finally a first attempt to simulate the deposition of several particles is made with a 3D CEL model, resulting in the creation of porosity at the interface between particles.


Author(s):  
Daniel Nélias ◽  
Jing Xie ◽  
Hélène Walter-Le Berre ◽  
Yuji Ichikawa ◽  
Kazuhiro Ogawa

2010 ◽  
Vol 654-656 ◽  
pp. 1880-1883 ◽  
Author(s):  
Kevin Spencer ◽  
Vladimir Luzin ◽  
Ming Xing Zhang

Cold spray coatings are considered promising for surface protection of light metal substrates but the mechanisms of bonding and coating build-up are still poorly understood and are the subject of continuing debate. A variety of coating/substrate combinations have been characterised in detail using electron microscopy to examine the nature of the interparticle and particle/substrate interfaces. Through-thickness residual stress profiles obtained via neutron diffraction show that the internal stress varies significantly depending on the coating materials. The work will present a picture of the cold spray deposition process using different material examples.


2012 ◽  
Vol 706-709 ◽  
pp. 258-263 ◽  
Author(s):  
Wilson Wong ◽  
Eric Irissou ◽  
Jean Gabriel Legoux ◽  
Phuong Vo ◽  
Steve Yue

This study investigates the effect of powder processing on powder flowability, compact ability, and the heat treatment of the resulting coatings on the mechanical properties of cold gas dynamic sprayed Ti-6Al-4V alloy. Nitrogen gas was used throughout the coating deposition process. Propellant gas temperature and pressure were attuned to maximize particle impact velocity. Three powder processing conditions were used in this study: as received (AR), low-energy ball milled (BM), and argon atmosphere heat treated (HT). Results showed coating porosities of around 6 to 7%, regardless of the feedstock powder used or the heat treatment performed. It was observed at 600 and 800°C anneals that a coating hardness reduction occurred, possibly due to static recovery and recrystallization, with minor sintering possibly occurring at the 800°C anneals. In addition, micro tensile tests showed an increase in cohesion strength at higher heat treatment temperatures.


2021 ◽  
Author(s):  
Antonio Viscusi ◽  
Antonello Astarita ◽  
Domenico Borrelli ◽  
Antonio Caraviello ◽  
Luigi Carrino ◽  
...  

PMCs are anisotropic and heterogeneous structures with excellent performances in terms of mechanical strength and stiffness, coupled with reduced weight, widely used in engineering sectors. The use of PMCs can be further extended by improving their surface properties such as electrical conductivity, erosion, radiation and lightning protection. In this context, the surface metallization seems to be best solution. In particular, the cold spray (CS) technique candidates as a potential method for the manufacturing of a metal coating on PMCs’ surface. However, the design and the manufacturing methods of PMCs can play a crucial role for an effective metallization through CS. The additive manufacturing technologies for composite materials can be used to manufacture customized reinforced polymer-based panels, like PMCs; the most common method for printing them is the Fused Filament Fabrication (FFF) technique which relies on the thermal extrusion of a thermoplastic feedstock from a mobile heated nozzle. Therefore, this research activity aims to manufacture customized PMCs panels by using FFF technology for the substrate and the cold spray technique for the metallization in order to study the influence of the substrate manufacturing strategy on CS deposition process. For this purpose, three kind of 3D-printed PMCs were manufactured through the FFF technology by varying the percentage fill of the Onyx polymeric matrix and aluminum powders were sprayed on the substrates with a low-pressure cold spray (LPCS) system; both FFF and CS process parameters were varied to study the process in its wholeness. Microscope analyses were carried out to analyze the influence of the manufacturing strategy on the coating quality.


Author(s):  
Nicholas Goodman ◽  
Brian J Leege ◽  
Peter E Johnson

Exposing students to hands-on experiments has been a common approach to illustrating complex physical phenomena that have been otherwise modelled solely mathematically. Compressible, isentropic flow in a duct is an example of such a phenomenon, and it is often demonstrated via a de Laval nozzle experiment. We have improved an existing converging/diverging nozzle experiment so that students can modify the location of the normal shock that develops in the diverging portion to better understand the relationship between the shock and the pressure. We have also improved the data acquisition system for this experiment and explained how visualisation of the standing shock is now possible. The results of the updated system demonstrate that the accuracy of the isentropic flow characteristics has not been lost. Through pre- and post-laboratory quizzes, we show the impact on student learning as well.


Sign in / Sign up

Export Citation Format

Share Document