Single-Cell mRNA Marker Analysis Reveals Appearance of t-SNE-Defined New B-Cell Clusters in Cynomolgus Monkeys in Response to Ofatumumab Treatment

Author(s):  
Philippe Couttet
Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 686-686
Author(s):  
Jean-Baptiste Alberge ◽  
Sarthak Sinha ◽  
Ranjan Maity ◽  
Arzina Jaffer ◽  
Justin Donovan ◽  
...  

Background: Targeting the anti-apoptotic BCL2 protein in haematological malignancies has demonstrated significant anti-tumoral activity in a subset of multiple myeloma patients harbouring rearrangements involving the CCND1 and the immunoglobulin heavy chain enhancers (Eμ and α1/2). The mechanisms underlying the dependency of this subgroup of MM patients on BCL2 remains to be elucidated as well as the mechanisms of resistance to BCL2 inhibition with BH3 mimetic venetoclax. Methods and Results: Sorted bone marrow plasma cells from a cohort of t(11;14) myeloma patients treated with venetoclax were profiled through multi-omics single cell mRNA expression (scRNAseq), copy number profiling (scCNVseq) as well as chromatin accessibility with single cell ATAC-seq. Sequenced reads were aligned to hg38 reference genome. Samples were processed with CellRanger suite v3.0 and downstream analyses were realized with Seurat, Monocle, Signac, and Cicero R packages. Single plasma cells exhibited differential chromatin accessibility landscapes within and across individual patients as well as pre- and post-venetoclax with enrichment of MYC:MAX, RELA, IRF family, RUNX1/3 and ETS motifs. Integration of mRNA and ATAC data revealed a dynamic change of regulatory motifs across individual cell clusters with evidence of selective pressures driven by venetoclax treatment. Similarly mRNA profiling of the apoptotic genes pre- and post-venetoclax exposure showed loss of BCL2 and upregulation of MCL1 and/or BCL2L1 as well as loss of the BH3-only pro-apoptotic genes PMAIP1 and BCC3 in single cell clusters. mRNA levels mirrored open chromatin at the gene bodies and their respective promoter loci consistent with a direct transcriptional regulation. In a patient with several fold upregulation of the BCL2L1 transcript in the post-venetoclax sample (Figure A-B), scATACseq identified a gain in the chromatin accessibility mapping to a genomic region centromeric to BCL2L1 locus on chromosome 20 (chr20:31,617,200-31,619,900). Single cell CNV analysis identified a 5q loss (chr5:142,400,001-156,240,000) mapping to NR3C1 locus explaining with the clinical resistance to dexamethasone. Importantly scCNV also revealed a copy number gain mapping to the same locus with the newly acquired chromatin accessibility on chromosome 20. Mate-pair analysis of the sequencing reads identified the potent IGLL5 B-cell enhancer on chromosome 22 (chr22:22,960,001-22,980,000) as the mate partner juxtaposed the BCL2L1 locus (Figure C). This finding explains the robust upregulation of BCL2L1 mRNA observed in this patient and the shift in BCL2 dependency detected by ex vivo BH3 sensitivity profiling. Of note, while scCNV analysis also depicted a gain in 1q21 (chr1:149,940,001-169,980,001) MCL1 locus at the time of venetoclax resistance the acquisition of t(20,22) shifted the plasma cells dependency to BCL-xL rather than MCL1. This finding was corroborated by the plasma cells ex vivo resistance to dual BCL2 and MCL1 inhibition. Conclusion: Dynamic single cell epigenome and transcriptome profiling of pre- and post-venetoclax of primary plasma cells identified a de novo translocation driving BCL-xL transcription with the IGLL5 B-cell enhancer. This demonstrates that in addition to canonical TF-promoter regulation, restructuring of immunoglobulin regulatory sequences (i.e., enhancers) can also drive aberrant malignant circuitry endowing resistance to anti-BCL2 agents. Figure. Disclosures Neri: Celgene, Janssen: Consultancy, Honoraria, Research Funding. Bahlis:Celgene: Consultancy, Honoraria; Janssen: Consultancy, Honoraria; Takeda: Consultancy, Honoraria; Amgen: Consultancy, Honoraria; AbbVie: Consultancy, Honoraria.


2021 ◽  
Author(s):  
Xue Fan ◽  
Yuhan Zhou ◽  
Xin Guo ◽  
Mingguo Xu

Abstract Background: Kawasaki disease (KD) is the main cause of acquired heart disease in children and can lead to coronary artery lesions. This present study was designed to analyze the characteristics of KD peripheral blood mononuclear cells (PBMC) through single-cell RNA sequecing (scRNA-seq) and to explore the potential molecular mechanism of KD.Methods: PBMC was collected from one healthy child and one KD patient, and was used to single-cell RNA sequencing for cell clusters identification and differently expressed gene (DEG) determination. GO function enrichment analysis of DEG in B cell and T cells were performed to explore the most active biological function in KD immune cells. Results: 13 cell clusters can be identified in two samples. Compared with healthy child, naive CD8+ T cell, T helper cell and B cell in KD child were decreased, mainly immune-related T cells, and natural killer T (NKT) cell and neutrophil were increased. Cell activation, lymphocyte activation and regulation of immune system process were 3 GO function shared by all four types of T cells and B cell.Conclusions: Immune cell disorder appears in the KD patient at single cell level by scRNA-seq.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Xue Fan ◽  
Yuhan Zhou ◽  
Xin Guo ◽  
Mingguo Xu

Abstract Background Kawasaki disease (KD) is the main cause of acquired heart disease in children and can lead to coronary artery lesions. This present study was designed to analyze the characteristics of KD peripheral blood mononuclear cells (PBMC) through single-cell RNA sequencing (scRNA-seq) and to explore the potential molecular mechanism of KD. Methods PBMC was collected from one healthy child and one KD patient, and was used to single-cell RNA sequencing for cell clusters identification and differently expressed gene (DEG) determination. GO function enrichment analysis of DEG in B cell and T cells were performed to explore the most active biological function in KD immune cells. Results Twelve cell clusters can be identified in two samples. Compared with healthy child, naive CD8+ T cell, T helper cell and B cell in KD child were decreased, mainly immune-related T cells, and natural killer T (NKT) cell were increased. Cell activation, lymphocyte activation and regulation of immune system process were 3 GO function shared by all four types of T cells and B cell. Conclusions Immune cell disorder appears in the KD patient at single cell level by scRNA-seq.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Luca Alessandri ◽  
Francesca Cordero ◽  
Marco Beccuti ◽  
Nicola Licheri ◽  
Maddalena Arigoni ◽  
...  

AbstractSingle-cell RNA sequencing (scRNAseq) is an essential tool to investigate cellular heterogeneity. Thus, it would be of great interest being able to disclose biological information belonging to cell subpopulations, which can be defined by clustering analysis of scRNAseq data. In this manuscript, we report a tool that we developed for the functional mining of single cell clusters based on Sparsely-Connected Autoencoder (SCA). This tool allows uncovering hidden features associated with scRNAseq data. We implemented two new metrics, QCC (Quality Control of Cluster) and QCM (Quality Control of Model), which allow quantifying the ability of SCA to reconstruct valuable cell clusters and to evaluate the quality of the neural network achievements, respectively. Our data indicate that SCA encoded space, derived by different experimentally validated data (TF targets, miRNA targets, Kinase targets, and cancer-related immune signatures), can be used to grasp single cell cluster-specific functional features. In our implementation, SCA efficacy comes from its ability to reconstruct only specific clusters, thus indicating only those clusters where the SCA encoding space is a key element for cells aggregation. SCA analysis is implemented as module in rCASC framework and it is supported by a GUI to simplify it usage for biologists and medical personnel.


2021 ◽  
Vol 80 (Suppl 1) ◽  
pp. 21.2-21
Author(s):  
S. R. Dillon ◽  
L. S. Evans ◽  
K. E. Lewis ◽  
J. Yang ◽  
M. W. Rixon ◽  
...  

Background:BAFF and APRIL are TNF superfamily members that form homo- and heteromultimers that bind TACI and BCMA on B cells; BAFF also binds BAFF-R. BAFF and APRIL support B cell development, differentiation, and survival, particularly for plasmablasts and plasma cells, and play critical roles in the pathogenesis of B cell-related autoimmune diseases. In nonclinical models, inhibition of either BAFF or APRIL alone mediates relatively modest effects, whereas their co-neutralization dramatically reduces B cell function, including antibody production. Fc fusions of wild-type (WT) TACI (e.g. atacicept and telitacicept) target both BAFF and APRIL and have demonstrated promising clinical potential in e.g. systemic lupus erythematosus (SLE) and IgA nephropathy but have not yet clearly exhibited long-term and/or complete disease remissions.Objectives:To generate a dual BAFF/APRIL antagonist with inhibitory activity superior to WT TACI and BCMA and with the potential to improve clinical outcomes in B cell-mediated diseases.Methods:Our directed evolution platform was used to identify a potent variant TNFR domain (vTD) of TACI that exhibits significantly enhanced affinity for BAFF and APRIL as compared to WT TACI; this TACI vTD domain was fused to a human IgG Fc to generate the therapeutic candidate ALPN-303. ALPN-303 was evaluated for functional activity in: 1) human lymphocyte assays, 2) the NOD.Aec1Aec2 spontaneous model of Sjogren’s syndrome (SjS), 3) the bm12-induced mouse model of lupus, 4) the (NZB/NZW)F1 spontaneous model of lupus, and 5) preclinical rodent and cynomolgus monkey pharmacokinetic/pharmacodynamic studies.Results:ALPN-303 inhibited BAFF- and APRIL-mediated signaling in vitro in human lymphocyte assays, with significantly lower IC50 values than WT TACI-Fc and belimumab comparators. In all mouse models evaluated, administration of ALPN-303 rapidly and significantly reduced key lymphocyte subsets including plasma cells, germinal center B cells, and follicular T helper cells. ALPN-303 significantly reduced autoantibodies and sialadenitis in the spontaneous SjS model, inhibited glomerular IgG deposition in the bm12-induced model of lupus, and potently suppressed anti-dsDNA autoAbs, blood urea nitrogen levels, proteinuria, sialadenitis, kidney lesions, and renal immune complex deposition in the NZB/W lupus model. As compared to WT TACI-Fc, ALPN-303 exhibited higher serum exposure and significantly and persistently decreased titers of serum IgM, IgG, and IgA antibodies in mice and cynomolgus monkeys (Figure 1).Figure 1.ALPN-303 induces more potent suppression, as compared to WT TACI-Fc, of serum immunoglobulins following a single 9 mg/kg IV infusion (on Day 0; arrows) in female cynomolgus monkeys.Conclusion:ALPN-303 is a potent BAFF/APRIL antagonist derived from our directed evolution platform that consistently demonstrates encouraging immunomodulatory activity and efficacy in vitro and in vivo, superior in preclinical studies to anti-BAFF antibody and WT TACI-Fc. This novel Fc fusion molecule demonstrates favorable preliminary developability characteristics, including higher serum exposures and more potent immunosuppressive activities, which may enable lower clinical doses and/or longer dosing intervals than WT TACI-Fc therapeutics. ALPN-303 may thus be an attractive development candidate for the treatment of multiple autoimmune and inflammatory diseases, particularly B cell-related diseases such as SLE, SjS, and other connective tissue diseases. Preclinical development is underway to enable the initiation of clinical trials later this year.Disclosure of Interests:Stacey R. Dillon Shareholder of: Alpine Immune Sciences, Bristol Myers Squibb, Employee of: Alpine Immune Sciences, Bristol Myers Squibb, Lawrence S. Evans Shareholder of: Alpine Immune Sciences, Employee of: Alpine Immune Sciences, Katherine E. Lewis Shareholder of: Alpine Immune Sciences, Employee of: Alpine Immune Sciences, Jing Yang Shareholder of: Alpine Immune Sciences, Employee of: Alpine Immune Sciences, Mark W. Rixon Shareholder of: Alpine Immune Sciences, Employee of: Alpine Immune Sciences, Joe Kuijper Shareholder of: Alpine Immune Sciences, Employee of: Alpine Immune Sciences, Dan Demonte Shareholder of: Alpine Immune Sciences, Employee of: Alpine Immune Sciences, Janhavi Bhandari Shareholder of: Alpine Immune Sciences, Employee of: Alpine Immune Sciences, Steve Levin Shareholder of: Alpine Immune Sciences, Employee of: Alpine Immune Sciences, Kayla Kleist Shareholder of: Alpine Immune Sciences, Employee of: Alpine Immune Sciences, Sherri Mudri Shareholder of: Alpine Immune Sciences, Employee of: Alpine Immune Sciences, Susan Bort Shareholder of: Alpine Immune Sciences, Employee of: Alpine Immune Sciences, Daniel Ardourel Shareholder of: Alpine Immune Sciences, Employee of: Alpine Immune Sciences, Michelle A. Seaberg Shareholder of: Alpine Immune Sciences, Employee of: Alpine Immune Sciences, Rachel Wang Shareholder of: Alpine Immune Sciences, Employee of: Alpine Immune Sciences, Chelsea Gudgeon Shareholder of: Alpine Immune Sciences, Employee of: Alpine Immune Sciences, Russell Sanderson Shareholder of: Alpine Immune Sciences, Employee of: Alpine Immune Sciences, Martin F. Wolfson Shareholder of: Alpine Immune Sciences, Employee of: Alpine Immune Sciences, Jan Hillson Shareholder of: Alpine Immune Sciences, Employee of: Alpine Immune Sciences, Stanford L. Peng Shareholder of: Alpine Immune Sciences, Employee of: Alpine Immune Sciences


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii112-ii112
Author(s):  
Pravesh Gupta ◽  
Minghao Dang ◽  
Krishna Bojja ◽  
Tuan Tran M ◽  
Huma Shehwana ◽  
...  

Abstract The brain tumor immune microenvironment (TIME) continuously evolves during glioma progression and a comprehensive understanding of the glioma-centric immune cell repertoire beyond a priori cell types and/or states is uncharted. Consequently, we performed single-cell RNA-sequencing on ~123,000 tumor-derived immune cells from 17-pathologically stratified, IDH (isocitrate dehydrogenase)-differential primary, recurrent human gliomas, and non-glioma brains. Our analysis delineated predominant 34-myeloid cell clusters (~75%) over 28-lymphoid cell clusters (~25%) reflecting enormous heterogeneity within and across gliomas. The glioma immune diversity spanned functionally imprinted phagocytic, antigen-presenting, hypoxia, angiogenesis and, tumoricidal myeloid to classical cytotoxic lymphoid subpopulations. Specifically, IDH-mutant gliomas were enriched for brain-resident microglial subpopulations in contrast to enhanced bone barrow-derived infiltrates in IDH-wild type, especially in a recurrent setting. Microglia attrition in IDH-wild type -primary and -recurrent gliomas were concomitant with invading monocyte-derived cells with semblance to dendritic cell and macrophage/microglia like transcriptomic features. Additionally, microglial functional diversification was noted with disease severity and mostly converged to inflammatory states in IDH-wild type recurrent gliomas. Beyond dendritic cells, multiple antigen-presenting cellular states expanded with glioma severity especially in IDH-wild type primary and recurrent- gliomas. Furthermore, we noted differential microglia and dendritic cell inherent antigen presentation axis viz, osteopontin, and classical HLAs in IDH subtypes and, glioma-wide non-PD1 checkpoints associations in T cells like Galectin9 and Tim-3. As a general utility, our immune cell deconvolution approach with single-cell-matched bulk RNA sequencing data faithfully resolved 58-cell states which provides glioma specific immune reference for digital cytometry application to genomics datasets. Resultantly, we identified prognosticator immune cell-signatures from TCGA cohorts as one of many potential immune responsiveness applications of the curated signatures for basic and translational immune-genomics efforts. Thus, we not only provide an unprecedented insight of glioma TIME but also present an immune data resource that can be exploited to guide pragmatic glioma immunotherapy designs.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A576-A576
Author(s):  
Pravesh Gupta ◽  
Minghao Dang ◽  
Krishna Bojja ◽  
Huma Shehwana ◽  
Tuan Tran ◽  
...  

BackgroundBrain immunity is largely myeloid cell dominated rather than lymphoid cells in healthy and diseased state including malignancies of glial origins called as gliomas. Despite this skewed myeloid centric immune contexture, immune checkpoint and T cell based therapeutic modalities are generalizably pursued in gliomas ignoring the following facts i) T cells are sparse in tumor brain ii) glioma patients are lymphopenic iii) gliomas harbor abundant and highly complex myeloid cell repertoire. We recognized these paradoxes pertaining to fundamental understanding of constituent immune cells and their functional states in the tumor immune microenvironment (TIME) of gliomas, which remains elusive beyond a priori cell types and/or states.MethodsTo dissect the TIME in gliomas, we performed single-cell RNA-sequencing on ~123,000 tumor-derived sorted CD45+ leukocytes from fifteen genomically classified patients comprising IDH-mutant primary (IMP; n=4), IDH-mutant recurrent (IMR; n=4), IDH-wild type primary (IWP; n=3), or IDH-wild type recurrent (IWR; n=4) gliomas (hereafter referred as glioma subtypes) and two non-glioma brains (NGBs) as controls.ResultsUnsupervised clustering analyses delineated predominant 34-myeloid cell clusters (~75%) over 28-lymphoid cell clusters (~25%) reflecting enormous heterogeneity within and across glioma subtypes. The glioma immune diversity spanned functionally imprinted phagocytic, antigen-presenting, hypoxia, angiogenesis and, tumoricidal myeloid to classical cytotoxic lymphoid subpopulations. Specifically, IDH-mutant gliomas were predominantly enriched for brain-resident microglial subpopulations in contrast to enriched bone barrow-derived infiltrates in IDH-wild type especially in a recurrent setting. Microglia attrition in IWP and IWR gliomas were concomitant with invading monocyte-derived cells with semblance to dendritic cell and macrophage like transcriptomic features. Additionally, microglial functional diversification was noted with disease severity and mostly converged to inflammatory states in IWR gliomas. Beyond dendritic cells, multiple antigen-presenting cellular states expanded with glioma severity especially in IWP and IWR gliomas. Furthermore, we noted differential microglia and dendritic cell inherent antigen presentation axis viz, osteopontin, and classical HLAs in IDH subtypes and, glioma-wide non-PD1 checkpoints associations in T cells like Galectin9 and Tim-3. As a general utility, our immune cell deconvolution approach with single-cell-matched bulk RNA sequencing data faithfully resolved 58-cell states which provides glioma specific immune reference for digital cytometry application to genomics datasets.ConclusionsAltogether, we identified prognosticator immune cell-signatures from TCGA cohorts as one of many potential immune responsiveness applications of the curated signatures for basic and translational immune-genomics efforts. Thus, we not only provide an unprecedented insight of glioma TIME but also present an immune data resource that can be exploited for immunotherapy applications.Ethics ApprovalThe brain tumor/tissue samples were collected as per MD Anderson internal review board (IRB)-approved protocol numbers LAB03-0687 and, LAB04-0001. One non-tumor brain tissue sample was collected from patient undergoing neurosurgery for epilepsy as per Baylor College of Medicine IRB-approved protocol number H-13798. All experiments were compliant with the review board of MD Anderson Cancer Center, USA.ConsentWritten informed consent was obtained from the patient for publication of this abstract and any accompanying images. A copy of the written consent is available for review by the Editor of this journal


2018 ◽  
Vol 64 ◽  
pp. S33-S34 ◽  
Author(s):  
Kara Davis ◽  
Zinaida Good ◽  
Jolanda Sarno ◽  
Astraea Jager ◽  
Nikolay Samusik ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document