scholarly journals Self Healing of Cracks in Concrete with Bacteria

2020 ◽  
Vol 3 (2) ◽  
pp. 65
Author(s):  
İlker Bekir Topçu Topçu ◽  
Tayfun Uygunoğlu ◽  
Emre Kıvanç Budak

During the service life of concrete structures, internal and external effects and micro-cracks occur in the structure. These cracks cause leakage of harmful substances into the concrete, deterioration of the strength and durability properties of the concrete, structural damages and crashes, and the high cost of maintenance and repair of the concrete structure. It is known that water-dissolved CO2 reacts with Ca+2 ions in the concrete and can repair the concrete by forming CaCO3 (limestone) crystals with very little water solubility. However, for this type of self-repair to occur, there must be water in the environment and this repair can only be made if the cracks are too small. Recently, bacterial concrete methods which has ability to self-healing are used to overcome maintenance and repair costs. In 1994, the first study on the ability to self-healing with the extra materials that were added to the concrete during the production of concrete was published by Carolyn Dry of Illinois University. Eric Schlagen and Henk Jonkers who have been researching about self-healing concrete by adding bacterial spores and calcium lactate foods to the mixture while producing concrete have made a remarkable study in this field since 2006. Bacterial concrete, Bacillus bacterial spores in the medium of the water-activated nutrients and calcium sources in the range of appropriate pH values in the concrete due to the formation of a fibrous structure is caused by precipitation of calcite. Thus, with the precipitation of calcite, the bacteria are embedded in concrete and the concrete is provided to improve itself. In previous studies, it has been shown that the cracks and voids in the concrete are filled with the ethrengeite and C-S-H structure when the control and bio-based concrete samples examined by SEM and XRD are compared. In previous studies, it was observed that mechanical strength and durability of the concrete is increased. It should be noted that the concentration of bacteria used in the solution and the ambient pH value is specified. Although conventional maintenance and repair methods are fast reacting, and short-term efficient, bacterial concrete method is sustainable, slow and long-term efficient. In addition, it is an environmentally friendly method compared to chemical repair methods and is expected to be among the remarkable materials of the future. The high initial cost leads to a reduction in producer demand, and the development process must continue to achieve the desired results and cost. As a result, it will be possible to obtain more durable structures by not wasting time, saving money and reducing the costs of high maintenance and repair. In other respects, it is a great advantage for sustainable development. Technical studies are continuing due to the high cost and laboratory test results of the bacterial family, as well as the impacts on the survival of the bacterial family. In this study, previous studies were evaluated, and some suggestions were made based on these studies.

This paper focuses on how the bacterium produces calcite to repair cracks and thereby increases the strength and durability of the concrete. The bacterial concrete can be made by embedding bacteria in the concrete to make it constantly precipitate calcite. Bacillus E Coli and Bacillus Subtilis JC3 are used for this purpose. Bacillus E coli and Bacillus Subtilis JC3 induced at cell concentration 10^5 cells/ml improves properties of concrete. This paper campaigns for the induction of bacteria in concrete for the promotion of self-healing cracks.


2018 ◽  
Vol 7 (4.2) ◽  
pp. 21
Author(s):  
S. Subhashini ◽  
K. K.Yaswanth ◽  
D S.V.Prasad

The main disadvantage of using concrete, which is accepted to be irreplaceable building material, is the formation of micro cracks. This is due to the fact that concrete is weak in tension. To arrest the microcracks developed in the concrete and to eliminate the drawbacks due to microcracks, the recent trend in the innovation of the concrete is the usage of self-healing concrete or bacterial concrete. It is based on the principle that; the bacteria present in the moisture of the concrete repairs or heals the cracks on the concrete. Another recent advancement in the field of concrete technology is the usage of the fibres in the concrete. It not only arrests the cracks in the concrete but also increases the strength and durability characteristics and also it reduces the quantity of cement to some extent. This paper tries to attempt the usage of hybrid fibres along with the self-healing concrete to enhance the desirable characteristics of hybrid fibres as well as bacterial concrete. This experimental programme investigates the concrete on its strength and durability characteristics.  


2013 ◽  
Vol 50 (3) ◽  
pp. 275-287 ◽  
Author(s):  
Yingbo Zhang ◽  
Kaare Höeg ◽  
Weibiao Wang ◽  
Yue Zhu

The coefficient of permeability of hydraulic asphalt concrete is in the range 10−8–10−10 cm/s. Laboratory test results show that triaxial specimens in axial compression can undergo axial strains up to 18% without any significant increase in permeability until approaching the compressive strength. For temperatures between 5 and 20 °C and strain rates between 2 × 10−3%/s and 5 × 10−3%/s, conventional hydraulic asphalt concrete can tolerate 1%–3% tensile strains before cracking in direct tension tests and strains up to 3%–4% in bending. At 20 °C the tensile and bending strains at cracking are 2–4 times higher than those at 0 °C, and at −20 °C they are approximately 0.2% and 0.8%, respectively. Asphalt concrete possesses pronounced crack self-healing properties. In the experiments, the crack leakage rate dropped 1–4 orders of magnitude within a few hours and the cracked specimens regained 55% of the intact tensile strength after only 1 day of self-healing. In summary, the comprehensive series of laboratory tests documents that asphalt concrete has characteristics that make the material extremely well suited for use in impervious barriers in dams, and the test results reported herein can be of great use in barrier design.


Minerals ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 271
Author(s):  
Guobin Zhang ◽  
Yimin Zhang ◽  
Shenxu Bao ◽  
Liuhong Zhang

NaV2O5 mesocrystals were successfully synthesized from an alkaline-stripped pentavalent vanadium solution through a novel hydrothermal hydrogen reduction process. The optimal conditions for the hydrogen partial pressure, reaction temperature, initial solution pH value, and reaction time for the pure-phase NaV2O5 synthesis were ascertained to be 4 MPa, 200 °C, 4.0, and 2 h, respectively. The synthesis time (only 2 h) was greatly shortened, by nine times, compared with the most time-saving (18 h) hydrothermal process at present. X-ray diffraction (XRD) analysis revealed that the as-prepared powders demonstrated a typical layered orthorhombic structure of NaV2O5. The purity of the as-prepared NaV2O5 reached up to 99.98%. An electrochemical test showed that the as-prepared NaV2O5 has a potential application in sodium ion batteries. According to scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analyses, the as-prepared NaV2O5 powders were identified to have rod-like mesocrystals consisting of small rods which preferentially grow along the (010) direction. Furthermore, the phase transformation mechanism and crystal growth mechanism in NaV2O5 preparation were discussed systematically, based on which the synthesis mechanism of NaV2O5 was proposed as pentavalent vanadates pre-sedimentation, hydrogen reduction with dehydration, sodium ions insertion, and finally self-assembly oriented attachment. The synthesis process is characterized as time-saving and low-cost, and thus it may have great application prospects.


2020 ◽  
Vol 113 ◽  
pp. 103718 ◽  
Author(s):  
Mingyue Wu ◽  
Xiangming Hu ◽  
Qian Zhang ◽  
Weimin Cheng ◽  
Di Xue ◽  
...  

2020 ◽  
Vol 33 ◽  
pp. 3148-3154
Author(s):  
Partheeban Pachaivannan ◽  
C. Hariharasudhan ◽  
M Mohanasundram ◽  
M. Anitha Bhavani

2013 ◽  
Vol 416-417 ◽  
pp. 2066-2071
Author(s):  
Guo Xiang He

The paper describe the EAM function by proposing the main modules and major business processes, abstracting the main business processes.it implements preventive maintenance of assets, assets track, the whole process of life-cycle management based on the equipment,asset account and treat management maintenance as the core, the submission, approval,implementation of work order as main line. EAM can effectively improve the efficiency of equipment maintenance, reduce maintenance and repair costs, improve asset reliability and value.


2012 ◽  
Vol 729 ◽  
pp. 205-209
Author(s):  
Anna Czeller ◽  
Tibor Czigány

In this paper, melamin-formaldehyde microcapsules filled with pentaerythritol tetrakis (3-mercaptopropionate) (PETMP) or epoxy were prepared via oil-in-water emulsion polymerization method. Two different routes were chosen from literature, and applied with some changes. The effects of modification of reaction conditions on the resulting capsules were studied. It was found that too low pH value in the emulsion causes burst polymerization of the wall material, without microcapsule formation. When pH was set to 4.5 spherical microcapsules were formed. Optical microscopy was used to evaluate the microcapsules.


Sign in / Sign up

Export Citation Format

Share Document