scholarly journals Synthesis of 4-O-Alkylated N-Acetylneuraminic Acid Derivatives

Author(s):  
Emil Johansson ◽  
Rémi Caraballo ◽  
Mikael Elofsson

<p><i>N</i>-acetyl neuraminic acid<i> </i>(Neu5Ac) is a densely functionalized nine-carbon monosaccharide. It ubiquitously decorates the surface of mammalian cells were it is found in terminal positions of glycolipids and glycoproteins. This important saccharide and natural analogs play important roles in a number of processes in health and disease. Despite this few Neu5Ac based therapeutics have been developed. To further study and understand the chemistry and biology of Neu5Ac efficient protocols for synthesis of the parent natural compounds as well as synthetic analogs are required. In the manuscript, we report investigation of alkylation reactions to produce selectively modified Neu5Ac with focus on position 4. The study provides insights in the reaction and we establish robust protocols that allow selective modification of Neu5Ac for use as tool compounds and starting points for drug discovery.</p>

2020 ◽  
Author(s):  
Emil Johansson ◽  
Rémi Caraballo ◽  
Mikael Elofsson

<p><i>N</i>-acetyl neuraminic acid<i> </i>(Neu5Ac) is a densely functionalized nine-carbon monosaccharide. It ubiquitously decorates the surface of mammalian cells were it is found in terminal positions of glycolipids and glycoproteins. This important saccharide and natural analogs play important roles in a number of processes in health and disease. Despite this few Neu5Ac based therapeutics have been developed. To further study and understand the chemistry and biology of Neu5Ac efficient protocols for synthesis of the parent natural compounds as well as synthetic analogs are required. In the manuscript, we report investigation of alkylation reactions to produce selectively modified Neu5Ac with focus on position 4. The study provides insights in the reaction and we establish robust protocols that allow selective modification of Neu5Ac for use as tool compounds and starting points for drug discovery.</p>


2020 ◽  
Vol 27 (29) ◽  
pp. 4840-4854 ◽  
Author(s):  
Chrysoula-Evangelia Karachaliou ◽  
Hubert Kalbacher ◽  
Wolfgang Voelter ◽  
Ourania E. Tsitsilonis ◽  
Evangelia Livaniou

Prothymosin alpha (ProT&#945;) is a highly acidic polypeptide, ubiquitously expressed in almost all mammalian cells and tissues and consisting of 109 amino acids in humans. ProT&#945; is known to act both, intracellularly, as an anti-apoptotic and proliferation mediator, and extracellularly, as a biologic response modifier mediating immune responses similar to molecules termed as “alarmins”. Antibodies and immunochemical techniques for ProT&#945; have played a leading role in the investigation of the biological role of ProT&#945;, several aspects of which still remain unknown and contributed to unraveling the diagnostic and therapeutic potential of the polypeptide. This review deals with the so far reported antibodies along with the related immunodetection methodology for ProT&#945; (immunoassays as well as immunohistochemical, immunocytological, immunoblotting, and immunoprecipitation techniques) and its application to biological samples of interest (tissue extracts and sections, cells, cell lysates and cell culture supernatants, body fluids), in health and disease states. In this context, literature information is critically discussed, and some concluding remarks are presented.


2019 ◽  
Vol 16 (4) ◽  
pp. 386-391 ◽  
Author(s):  
Kenneth Lundstrom

Epigenetic mechanisms comprising of DNA methylation, histone modifications and gene silencing by RNA interference have been strongly linked to the development and progression of various diseases. These findings have triggered research on epigenetic functions and signal pathways as targets for novel drug discovery. Dietary intake has also presented significant influence on human health and disease development and nutritional modifications have proven important in prevention, but also the treatment of disease. Moreover, a strong link between nutrition and epigenetic changes has been established. Therefore, in attempts to develop novel safer and more efficacious drugs, both nutritional requirements and epigenetic mechanisms need to be addressed.


Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 546
Author(s):  
Miroslava Nedyalkova ◽  
Vasil Simeonov

A cheminformatics procedure for a partitioning model based on 135 natural compounds including Flavonoids, Saponins, Alkaloids, Terpenes and Triterpenes with drug-like features based on a descriptors pool was developed. The knowledge about the applicability of natural products as a unique source for the development of new candidates towards deadly infectious disease is a contemporary challenge for drug discovery. We propose a partitioning scheme for unveiling drug-likeness candidates with properties that are important for a prompt and efficient drug discovery process. In the present study, the vantage point is about the matching of descriptors to build the partitioning model applied to natural compounds with diversity in structures and complexity of action towards the severe diseases, as the actual SARS-CoV-2 virus. In the times of the de novo design techniques, such tools based on a chemometric and symmetrical effect by the implied descriptors represent another noticeable sign for the power and level of the descriptors applicability in drug discovery in establishing activity and target prediction pipeline for unknown drugs properties.


2019 ◽  
Vol 81 (1) ◽  
pp. 453-482 ◽  
Author(s):  
Diane M. Ward ◽  
Suzanne M. Cloonan

Mitochondria are an iconic distinguishing feature of eukaryotic cells. Mitochondria encompass an active organellar network that fuses, divides, and directs a myriad of vital biological functions, including energy metabolism, cell death regulation, and innate immune signaling in different tissues. Another crucial and often underappreciated function of these dynamic organelles is their central role in the metabolism of the most abundant and biologically versatile transition metals in mammalian cells, iron. In recent years, cellular and animal models of mitochondrial iron dysfunction have provided vital information in identifying new proteins that have elucidated the pathways involved in mitochondrial homeostasis and iron metabolism. Specific signatures of mitochondrial iron dysregulation that are associated with disease pathogenesis and/or progression are becoming increasingly important. Understanding the molecular mechanisms regulating mitochondrial iron pathways will help better define the role of this important metal in mitochondrial function and in human health and disease.


2007 ◽  
Vol 35 (6) ◽  
pp. 1473-1478 ◽  
Author(s):  
M. Fukata ◽  
M.T. Abreu

The colonic epithelium is lined along its apical membrane with ∼1014 bacteria/g of tissue. Commensal bacteria outnumber mammalian cells in the gut severalfold. The reason for this degree of commensalism probably resides in the recent recognition of the microbiome as an important source of metabolic energy in the setting of poorly digestible nutrients. As in many themes in biology, the host may have sacrificed short-term benefit, i.e. nutritional advantages, for long-term consequences, such as chronic inflammation or colon cancer. In the present review, we examine the role of TLR (Toll-like receptor) signalling in the healthy host and the diseased host. We pay particular attention to the role of TLR signalling in idiopathic IBD (inflammatory bowel disease) and colitis-associated carcinogenesis. In general, TLR signalling in health contributes to homoeostatic functions. These include induction of antimicrobial peptides, proliferation and wound healing in the intestine. The pathogenesis of IBD, ulcerative colitis and Crohn's disease may be due to increased TLR or decreased TLR signalling respectively. Finally, we discuss the possible role of TLR signalling in colitis-associated neoplasia.


1973 ◽  
Vol 133 (4) ◽  
pp. 623-628 ◽  
Author(s):  
A. Neuberger ◽  
Wendy A. Ratcliffe

The hydrolysis of the model compound 2-O-methyl-4,7,8,9-tetra-O-acetyl-N-acetyl-α-d-neuraminic acid and neuraminidase (Vibrio cholerae) closely resembled that of the O-acetylated sialic acid residues of rabbit Tamm–Horsfall glycoprotein. This confirmed that O-acetylation was responsible for the unusually slow rate of acid hydrolysis of O-acetylated sialic acid residues observed in rabbit Tamm–Horsfall glycoprotein and their resistance to hydrolysis by neuraminidase. The first-order rate constant of hydrolysis of 2-methyl-N-acetyl-α-d-neuraminic acid by 0.05m-H2SO4 was 56-fold greater than that of 2-O-methyl-4,7,8,9-tetra-O-acetyl-N-acetyl -α-d-neuraminic acid. Kinetic studies have shown that in the pH range 1.00–3.30, the observed rate of hydrolysis of 2-methyl-N-acetyl-α-d-neuraminic acid can be attributed to acid-catalysed hydrolysis of the negatively charged CO2− form of the methyl ketoside.


2012 ◽  
pp. 127-160 ◽  
Author(s):  
Arturo San Feliciano ◽  
María Á. Castro ◽  
José L. López-Pérez ◽  
Esther del Olmo

Sign in / Sign up

Export Citation Format

Share Document