scholarly journals Design of new acid-activated cell-penetrating peptides for tumor drug delivery

PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e3429 ◽  
Author(s):  
Jia Yao ◽  
Yinyun Ma ◽  
Wei Zhang ◽  
Li Li ◽  
Yun Zhang ◽  
...  

TH(AGYLLGHINLHHLAHL(Aib)HHIL-NH2), a histidine-rich, cell-penetrating peptide with acid-activated pH response, designed and synthesized by our group, can effectively target tumor tissues with an acidic extracellular environment. Since the protonating effect of histidine plays a critical role in the acid-activated, cell-penetrating ability of TH, we designed a series of new histidine substituents by introducing electron donating groups (Ethyl, Isopropyl, Butyl) to the C-2 position of histidine. This resulted in an enhanced pH-response and improved the application of TH in tumor-targeted delivery systems. The substituents were further utilized to form the corresponding TH analogs (Ethyl-TH, Isopropyl-TH and Butyl-TH), making them easier to protonate for positive charge in acidic tumor microenvironments. The pH-dependent cellular uptake efficiencies of new TH analogs were further evaluated using flow cytometry and confocal laser scanning microscopy, demonstrating that ethyl-TH and butyl-TH had an optimal pH-response in an acidic environment. Importantly, the new TH analogs exhibited relatively lower toxicity than TH. In addition, these new TH analogs were linked to the antitumor drug camptothecin (CPT), while butyl-TH modified conjugate presented a remarkably stronger pH-dependent cytotoxicity to cancer cells than TH and the other conjugates. In short, our work opens a new avenue for the development of improved acid-activated, cell-penetrating peptides as efficient anticancer drug delivery vectors.

Molecules ◽  
2019 ◽  
Vol 24 (19) ◽  
pp. 3540 ◽  
Author(s):  
Xi Wang ◽  
Yarong Zhao ◽  
Shiyan Dong ◽  
Robert J. Lee ◽  
Dongsheng Yang ◽  
...  

Glioma is one of the most aggressive and common malignant brain tumors. Due to the presence of the blood-brain barrier (BBB), the effectiveness of therapeutics is greatly affected. In this work, to develop an efficient anti-glioma drug with targeting and which was able to cross the BBB, cell-penetrating peptides (R8) and transferrin co-modified doxorubicin (DOX)-loaded liposomes (Tf-LPs) were prepared. Tf-LPs possessed a spherical shape and uniform size with 128.64 nm and their ξ-potential was 6.81 mV. Tf-LPs were found to be stable in serum within 48 h. Uptake of Tf-LPs in both U87 and GL261 cells was analyzed by confocal laser scanning microscopy and by flow cytometry. Tf-LPs were efficiently taken up by both U87 and GL261 cells. Moreover, Tf-LPs exhibited sustained-release. The cumulative release of DOX from Tf-LPs reached ~50.0% and showed excellent anti-glioma efficacy. Histology of major organs, including brain, heart, liver, spleen, lungs and kidney, and the bodyweight of mice, all indicated low toxicity of Tf-LPs. In conclusion, Tf-LPs showed great promise as an anti-glioma therapeutic agent.


2007 ◽  
Vol 35 (4) ◽  
pp. 794-796 ◽  
Author(s):  
S. Pujals ◽  
E. Sabidó ◽  
T. Tarragó ◽  
E. Giralt

Proline-rich cell-penetrating peptides, particularly the SAP (sweet arrow peptide), (VRLPPP)3, have been proposed to be useful intracellular delivery vectors, as a result of their lack of cytotoxicity combined with their capacity to be internalized by cells. A common limitation of the therapeutic use of peptides is metabolic instability. In general, peptides are quickly degraded by proteases upon entry into the bloodstream. The use of all-D-peptide derivatives is emerging as a fruitful strategy to circumvent this degradation problem. In this context, we report on the internalization behaviour, protease-resistance enhancement and self-assembly properties of an all-D version of SAP [(vrlppp)3]. The cellular uptake of (vrlppp)3 was evaluated in an in vivo assay in mice. Both flow cytometry and confocal laser-scanning microscopy experiments showed that a carboxyfluoresceinated version of the molecule, carboxyfluorescein–(vrlppp)3, is internalized rapidly in white blood cells and kidney cells. Significant fluorescence was also detected in other organs such as the spleen and the liver. Finally, the toxicity of (vrlppp)3 was examined, and no significant differences in the main biochemical parameters nor in weight were detected compared with controls.


Cancers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 3749
Author(s):  
Yingnan Si ◽  
Ya Zhang ◽  
Hanh Giai Ngo ◽  
Jia-Shiung Guan ◽  
Kai Chen ◽  
...  

Triple-negative breast cancers (TNBCs) are highly aggressive and recurrent. Standard cytotoxic chemotherapies are currently the main treatment options, but their clinical efficacies are limited and patients usually suffer from severe side effects. The goal of this study was to develop and evaluate targeted liposomes-delivered combined chemotherapies to treat TNBCs. Specifically, the IC50 values of the microtubule polymerization inhibitor mertansine (DM1), mitotic spindle assembly defecting taxane (paclitaxel, PTX), DNA synthesis inhibitor gemcitabine (GC), and DNA damage inducer doxorubicin (AC) were tested in both TNBC MDA-MB-231 and MDA-MB-468 cells. Then we constructed the anti-epidermal growth factor receptor (EGFR) monoclonal antibody (mAb) tagged liposomes and confirmed its TNBC cell surface binding using flow cytometry, internalization with confocal laser scanning microscopy, and TNBC xenograft targeting in NSG female mice using In Vivo Imaging System. The safe dosage of anti-EGFR liposomal chemotherapies, i.e., <20% body weight change, was identified. Finally, the in vivo anti-tumor efficacy studies in TNBC cell line-derived xenograft and patient-derived xenograft models revealed that the targeted delivery of chemotherapies (mertansine and gemcitabine) can effectively inhibit tumor growth. This study demonstrated that the targeted liposomes enable the new formulations of combined therapies that improve anti-TNBC efficacy.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 770
Author(s):  
Patrick M. Perrigue ◽  
Richard A. Murray ◽  
Angelika Mielcarek ◽  
Agata Henschke ◽  
Sergio E. Moya

Nanoformulations offer multiple advantages over conventional drug delivery, enhancing solubility, biocompatibility, and bioavailability of drugs. Nanocarriers can be engineered with targeting ligands for reaching specific tissue or cells, thus reducing the side effects of payloads. Following systemic delivery, nanocarriers must deliver encapsulated drugs, usually through nanocarrier degradation. A premature degradation, or the loss of the nanocarrier coating, may prevent the drug’s delivery to the targeted tissue. Despite their importance, stability and degradation of nanocarriers in biological environments are largely not studied in the literature. Here we review techniques for tracing the fate of nanocarriers, focusing on nanocarrier degradation and drug release both intracellularly and in vivo. Intracellularly, we will discuss different fluorescence techniques: confocal laser scanning microscopy, fluorescence correlation spectroscopy, lifetime imaging, flow cytometry, etc. We also consider confocal Raman microscopy as a label-free technique to trace colocalization of nanocarriers and drugs. In vivo we will consider fluorescence and nuclear imaging for tracing nanocarriers. Positron emission tomography and single-photon emission computed tomography are used for a quantitative assessment of nanocarrier and payload biodistribution. Strategies for dual radiolabelling of the nanocarriers and the payload for tracing carrier degradation, as well as the efficacy of the payload delivery in vivo, are also discussed.


2019 ◽  
Author(s):  
Emma Björk ◽  
Bernhard Baumann ◽  
Florian Hausladen ◽  
Rainer Wittig ◽  
mika lindén

Spatially and temporally controlled drug delivery is important for implant and tissue engineering applications, as the efficacy and bioavailability of the drug can be enhanced, and can also allow for drugging stem cells at different stages of development. Long-term drug delivery over weeks to months is however difficult to achieve, and coating of 3D surfaces or creating patterned surfaces is a challenge using coating techniques like spin- and dip-coating. In this study, mesoporous films consisting of SBA-15 particles grown onto silicon wafers using wet processing were evaluated as a scaffold for drug delivery. Films with various particle sizes (100 – 900 nm) and hence thicknesses were grown onto OTS-functionalized silicon wafers using a direct growth method. Precise patterning of the areas for film growth could be obtained by local removal of the OTS functionalization through laser ablation. The films were incubated with the model drug DiO, and murine myoblast cells (C2C12 cells) were seeded onto films with different particle sizes. Confocal laser scanning microscopy (CLSM) was used to study the cell growth, and a vinculin-mediated adherence of C2C12 cells on all films was verified. The successful loading of DiO into the films was confirmed by UV-vis and CLSM. It was observed that the drugs did not desorb from the particles during 24 hours in cell culture. During adherent growth on the films for 4 h, small amounts of DiO and separate particles were observed inside single cells. After 24 h, a larger number of particles and a strong DiO signal were recorded in the cells, indicating a particle mediated drug uptake. A substantial amount of DiO loaded particles were however attached on the substrate after 24 making the films attractive as a long-term reservoir for drugs on e.g. medical implants.<br>


2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Zehua Liu ◽  
Shaoheng Tang ◽  
Zhiran Xu ◽  
Yingjun Wang ◽  
Xuan Zhu ◽  
...  

For preventing premature drug release in neutral environment and avoiding them being trapped into the endosomal/lysosomal system, we developed a novel iron silicate@liposome hybrid (ILH) formulation, which can be used as a carrier to transport doxorubicin (DOX) in a pH-sensitive manner and to escape from endosomal/lysosomal trapping through “proton-sponge” effect. The high intensity of photoacoustic signal fromin vitrophotoacoustic imaging (PAI) experiments suggests that it is a promising candidate for PAI agent, providing the potential for simultaneously bioimaging and cancer-targeting drug delivery. Cytotoxicity of our formulation toward tumor cells was remarkably higher than free DOX (48.4±7.7% and26.2±8.4%,P<0.001). Confocal laser scanning microscopy experiments showed the enhanced transportation and enrichment process of DOX in QSG-7703 cells. Taking together, we developed an easy approach to construct a multifunctional anticancer drug delivery/imaging system with a potency as a PAI agent. The strategy of combining drug carrier and imaging agent is an emerging platform for further construction of nanoparticle and may play a significant role in cancer therapy and diagnosis.


2008 ◽  
Vol 8 (6) ◽  
pp. 3085-3090 ◽  
Author(s):  
Akihiro Hayama ◽  
Tatsuhiro Yamamoto ◽  
Masayuki Yokoyama ◽  
Kumi Kawano ◽  
Yoshiyuki Hattori ◽  
...  

A novel technique was developed for the formation of ligand-targeted polymeric micelles that can be applicable to various ligands. For tumor-specific drug delivery, camptothecin (CPT)-loaded polymeric micelles were modified by folate to produce a folate-receptor-targeted drug carrier. Folate-linked PEG5000-distearoylphosphatidylethanolamine (folate-PEG5000-DSPE) was added when preparations of drug-loaded polymeric micelles, resulting in folate ligands exposed to the surface. Folate-modified CPT-loaded polymeric micelles (F-micelle) were evaluated by measuring cellular uptake using a flow cytometer, fluorescence microscopy, and confocal laser scanning microscopy, and by cytotoxicity measurement. The results revealed that F-micelle showed higher cellular uptake in KB cells over-expressing folate receptor (FR) and higher cytotoxicity compared with non-folate modified CPT-loaded polymeric micelles (plain micelles) in KB cells, but not in FR-negative HepG2 cells. This result indicated that polymeric micelles were successfully modified by the folate-linked lipid.


2019 ◽  
Author(s):  
Emma Björk ◽  
Bernhard Baumann ◽  
Florian Hausladen ◽  
Rainer Wittig ◽  
mika lindén

Spatially and temporally controlled drug delivery is important for implant and tissue engineering applications, as the efficacy and bioavailability of the drug can be enhanced, and can also allow for drugging stem cells at different stages of development. Long-term drug delivery over weeks to months is however difficult to achieve, and coating of 3D surfaces or creating patterned surfaces is a challenge using coating techniques like spin- and dip-coating. In this study, mesoporous films consisting of SBA-15 particles grown onto silicon wafers using wet processing were evaluated as a scaffold for drug delivery. Films with various particle sizes (100 – 900 nm) and hence thicknesses were grown onto OTS-functionalized silicon wafers using a direct growth method. Precise patterning of the areas for film growth could be obtained by local removal of the OTS functionalization through laser ablation. The films were incubated with the model drug DiO, and murine myoblast cells (C2C12 cells) were seeded onto films with different particle sizes. Confocal laser scanning microscopy (CLSM) was used to study the cell growth, and a vinculin-mediated adherence of C2C12 cells on all films was verified. The successful loading of DiO into the films was confirmed by UV-vis and CLSM. It was observed that the drugs did not desorb from the particles during 24 hours in cell culture. During adherent growth on the films for 4 h, small amounts of DiO and separate particles were observed inside single cells. After 24 h, a larger number of particles and a strong DiO signal were recorded in the cells, indicating a particle mediated drug uptake. A substantial amount of DiO loaded particles were however attached on the substrate after 24 making the films attractive as a long-term reservoir for drugs on e.g. medical implants.<br>


2021 ◽  
Vol 9 ◽  
Author(s):  
Panyong Zhu ◽  
Pin Lv ◽  
Yazhou Zhang ◽  
Rongqiang Liao ◽  
Jing Liu ◽  
...  

Cannabidiol (CBD) is one specific kind of the cannabinoid in Cannabis sativa L with a wide range of pharmacological activities. However, the poor water solubility and specificity of CBD limits its application in pharmaceutical field. For solving these problems, in this work, we successfully prepared a targeted carrier by grafting biotin (BIO) onto ethylenediamine-β-Cyclodextrin (EN-CD) in a single step to generate a functionalized supramolecule, named BIO-CD. Subsequently, an amantadine-conjugated cannabinoids (AD-CBD) was prepared and self-assembled with the BIO-CD. A series of methods were used to characterize the inclusion behavior and physicochemical properties of AD-CBD and BIO-CD. The results showed that AD-CBD entered the cavity of BIO-CD and formed a 1:1 host-guest inclusion complex. MTT assay and confocal laser scanning microscopy (CLSM) revealed that the targeting effect and anticancer activity of AD-CBD/BIO-CD inclusion complex against three human cancer cell lines were higher than BIO-CD, AD-CBD and free CBD. Moreover, the inclusion complex could release drugs under weakly acidic conditions. These results demonstrated that AD-CBD/BIO-CD inclusion complex possess excellent targeted and anticancer activity, which is hopeful to be applied in clinic as a new therapeutic approach.


Sign in / Sign up

Export Citation Format

Share Document