scholarly journals The use of the localization method for calculation of the robust PID regulator parameters for unmanned aircraft servo motor

2020 ◽  
Vol 23 (1) ◽  
pp. 95-105
Author(s):  
A. A. Sanko ◽  
A. A. Sheinikov ◽  
T. A. Tishchenko ◽  
D. A. Smolskiy

The problem of controlling a typical nonlinear servo motor of an unmanned aercraft with non-stationary parameters using a robust PID controller is considered. The procedure for calculating the parameters of a robust PID controller based on the localization method (further - LM PID controller) for continuous and discrete control systems is studied. The influence of disturbing factors (internal and external) acting on the servo motor is considered. It is established that the main perturbations acting on the servo drive include internal perturbations, which are changes in the time constant and its gain from the temperature of the environment and the quality of the supply voltage. The simulation in the class of linear and nonlinear continuous systems showed that a servo drive with a ML PID controller has the property of robustness in the working range of changes in both the input signal and the parameters of the servo drive and controller. Simulation results showing the research are presented. When describing a servo motor with an LM PID controller in the class of linear discrete systems, its robustness is limited by a narrow range of variation of both its parameters and the quantization period of the input signal. As the degree of uncertainty in the parameters of the servo motor increases (approaching the working range of their change), the discrete system loses stability. For the synthesis of robust control circuits of an unmanned aercraft with given characteristics, mathematical dependences of the settling time and static error of a typical servo motor with LM PID controller from the quantization period of the input signal and the degree of uncertainty in its parameters are presented.

2015 ◽  
Vol 9 (1) ◽  
pp. 625-631
Author(s):  
Ma Xiaocheng ◽  
Zhang Haotian ◽  
Cheng Yiqing ◽  
Zhu Lina ◽  
Wu Dan

This paper introduces a mathematical model for Pulse-Width Modulated Amplifier for DC Servo Motor. The relationship between pulse-width modulated (PWM) signal and reference rotation speed is specified, and a general model of motor represented by transfer function is also put forward. When the input signal changes, the rotation speed of the servo motor will change accordingly. By changing zeros and poles, transient performance of this system is discussed in detail, and optimal ranges of the parameters is recommended at the end of discussion.


Author(s):  
P. Vimala ◽  
C. R. Balamurugan ◽  
A. Subramanian ◽  
T. Vishwanath

The FOPID and PID controller are designed to control the speed of <br /> the BLDC motor. The parameters , , , λ and µ of these controller are optimized based on genetic algorithm. The optimized coefficients keep in track with zero error signals. The output of the controller is given to the variable dc source which varies the input voltage to the three phase inverter depending on the input signal. The three phase inverter gives the voltage to the BLDC motor which enhances the stability of the system. <br /> The effectiveness of the controller is demonstrated by simulation.


2015 ◽  
Vol 63 (1) ◽  
pp. 217-219
Author(s):  
C. Zych ◽  
A. Wrońska-Zych ◽  
J. Dudczyk ◽  
A. Kawalec

Abstract A two-axis gimbal system can be used for stabilizing platform equipped with observation system like cameras or different measurement units. The most important advantageous of using a gimbal stabilization is a possibility to provide not disturbed information or data from a measurement unit. This disturbance can proceed from external working conditions. The described stabilization algorithm of a gimbal system bases on a regulator with a feedback loop. Steering parameters are calculated from quaternion transformation angular velocities received from gyroscopes. This data are fed into the input of Proportional Integral Derivative (PID) controller. Their input signal is compared with earned value in the feedback loop. The paper presents the way of increasing the position’s accuracy by getting it in the feedback loop. The data fusion from a positioning sensor and a gyroscope results in much better accuracy of stabilization.


Author(s):  
Oladimeji Ibrahim ◽  
Nor Zaihar B Yahaya ◽  
Nordin Saad

Power converter operations and efficiency is affected by variation in supply voltage, loads current, circuit elements, ageing and temperature.  To meet the objective of tight voltage regulation, power converters circuit module and the control unit must be robust to reject disturbances arising from supply, load variation and changes in circuit elements. PID controller has been the most widely used in power converter control. This paper presents studies of robustness of PID controller tuning methods to step changes in the set point and disturbance rejection in power converter control. A DC-DC boost converter was modelled using averaged state-space mothod and PID controllers were designed with five different tuning methods. The study reveals the transient response and disturbance rejection capability of each tuning methods for their suitability in power supply design applications.


2018 ◽  
Vol 92 (3) ◽  
pp. 318-328
Author(s):  
Marcin Chodnicki ◽  
Katarzyna Bartnik ◽  
Miroslaw Nowakowski ◽  
Grzegorz Kowaleczko

Purpose The motivation to perform research on feedback control system for unmanned aerial vehicles, a fact that each quadrocopter is unstable. Design/methodology/approach For this reason, it is necessary to design a control system which is capable of making unmanned aerial vehicle vertical take-off and landing (UAV VTOL) stable and controllable. For this purpose, it was decided to use a feedback control system with cascaded PID controller. The main reason for using it was that PID controllers are simple to implement and do not use much hardware resources. Moreover, cascaded control systems allow to control object response using more parameters than in a standard PID control. STM32 microcontrollers were used to make a real control system. The rapid prototyping using Embedded Coder Toolbox, FreeRTOS and STM32 CubeMX was conducted to design the algorithm of the feedback control system with cascaded PID controller for unmanned aerial vehicle vertical take-off and landings (UAV VTOLs). Findings During research, an algorithm of UAV VTOL control using the feedback control system with cascaded PID controller was designed. Tests were performed for the designed algorithm in the model simulation in Matlab/Simulink and in the real conditions. Originality/value It has been proved that an additional control loop must have a full PID controller. Moreover, a new library is presented for STM32 microcontrollers made using the Embedded Coder Toolbox just for the research. This library enabled to use rapid prototyping while developing the control algorithms.


2012 ◽  
Vol 271-272 ◽  
pp. 472-475
Author(s):  
Fang Tian ◽  
Ping Ping Song ◽  
Ke Tao ◽  
Yuan Yuan Zhang

This paper presents a kind of chip-less pipe cutting machine feeding mechanism and briefly introduces its working principl. With the application of Ansys software, the cutter's under pressure of this tool is deduced. Then calculation of the motor's maximum speed, equivalent load inertia and equivalent load torque by this method , the chip-less pipe cutting machine's AC servo motor is determined and its capacity is checked.


2011 ◽  
Vol 403-408 ◽  
pp. 5112-5116 ◽  
Author(s):  
Chang Gao Xia ◽  
Chong Cao

Composed of a variable displacement pump and a constant displacement motor, the hydrostatic driving system is a kind of closed speed control system with adjustable displacement. It is widely used in the field of engineering vehicle and other fields. Based on an analysis of the constitution and mathematical model of the hydrostatic driving system, the present study tuned PID parameters by using the critical proportioning method and the optimization method of NCD respectively. Then a kind of fuzzy adaptive PID controller was designed on the basis of the traditional PID control and the fuzzy control theory. In the controller, fuzzy logic was used to realize online self-tuning of PID parameters according to the motor speed error and its derivative, so that the system could have better adaptive ability and strong disturbance resisting performance. The dynamic simulation was made in MATLAB/SIMULINK. The simulation results show that the optimization method of NCD has better tuning effect and the response performance of the fuzzy adaptive PID controller is better than that of the classic one. Besides, it should be noted that a drawback was found about the fuzzy adaptive PID control. On the basis of fixed scale factors, a group of quantification factors is appropriate for a specific input signal, but for other signals, the response of the system is not so ideal. A method of adjusting quantification factors according to input signal was adopted to solve the above problem. Automatic adjusting of quantification factors was realized, and this could ensure ideal response to all input signals.


Sign in / Sign up

Export Citation Format

Share Document