scholarly journals Pengatur Kecepatan Prototipe Mesin Solenoid 4 Induktor Menggunakan Metode Kontrol Frekuensi

eLEKTRIKA ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 59
Author(s):  
Yusuf Nurul Hilal ◽  
Trias Andromeda ◽  
Susatyo Handoko

<p class="JOURNALBODY"><em>The development of electric vehicles is in rapid progress, especially in terms of the main engine drive. The use of solenoid can be applied as an alternative driving electric vehicles instead of a dc motor as the main driver. In this paper, the prototype solenoid machine is applied by using 4 inductors controlled by an Arduino microcontroller and the solenoid driver based on application of Mosfet L298N. The prototype runs successfully. Based on the experimental results, the greater the frequency value applies to the driver, the faster the solenoid moves. The acceleration occures due to the electromagnetic field which is getting stronger and the field is proportional to the frequency value, so the solenoid movement is faster.</em></p>

Energies ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 6041
Author(s):  
Fredy A. Valenzuela ◽  
Reymundo Ramírez ◽  
Fermín Martínez ◽  
Onofre A. Morfín ◽  
Carlos E. Castañeda

A DC motor velocity control in feedback systems usually requires a velocity sensor, which increases the controller cost. Additionally, the velocity sensor used in industrial applications presents several disadvantages such as maintenance requirements and signal conditioning. In this work, we propose a robust velocity control scheme applied to a DC motor based on estimation strategies using a sliding-mode observer. This means that measurements with mechanical sensors are not required in the controller design. The proposed observer estimates the rotational velocity and load torque of the motor. The controller design applies the exact-linearization technique combined with the super-twisting algorithm to achieve robust performance in the closed-loop system. The controller validation was carried out by experimental tests using a workbench, which is composed of a control and data acquisition Digital Signal Proccessor board, a DC-DC electronic converter, an interface board for signals conditioning, and a DC electric generator connected to an adjustable resistive load. The simulation and experimental results show a significant performance of the proposed control scheme. During tests, the accuracy, robustness, and speed response on the controller were evaluated and the experimental results were compared with a classic proportional-integral controller, which uses a conventional encoder.


1967 ◽  
Vol 45 (5) ◽  
pp. 1729-1743 ◽  
Author(s):  
M. L. Burrows

The classical method of solving electromagnetic field problems involving boundary perturbations is reformulated in a way that is both more general and simpler. The new formulation makes it easier to apply the theory to the class of boundaries amenable to the classical formulation, and shows that it can also be applied to other boundary shapes. As an example, the perfectly conducting sphere with surface perturbations has been treated, using the methods appropriate only for boundaries in the classical class and also using those applicable to the larger class. Some experimental results which appear to support the theory are reported.


Author(s):  
Yung-Kuan Chan ◽  
Tung-Shou Chen ◽  
Yu-An Ho

With the rapid progress of digital image technology, the management of duplicate document images is also emphasized widely. As a result, this paper suggests a duplicate Chinese document image retrieval (DCDIR) system, which uses the ratio of the number of black pixels to that of white pixels on the scanned line segments in a character image block as the feature of the character image block. Experimental results indicate that the system can indeed effectively and quickly retrieve the desired duplicate Chinese document image from a database.


Author(s):  
Hao Xu ◽  
Long Chen ◽  
Xiaodong Sun

Permanent magnet synchronous hub motors (PMSHMs) have been gradually introduced into the applications of electric vehicles. In order to output more torque, many researchers turned their research direction to six-phase motors. Because it is composed of two sets of three-phase windings, there will be interference between the windings, affecting the performance of the motor. In order to improve the steady and dynamic-state performance of permanent magnet six phase synchronous motor, a predictive torque control method based on multi vector model is proposed in this paper. Finally, experimental results show the effectiveness of this method.


2019 ◽  
Vol 30 ◽  
pp. 06010
Author(s):  
Anton Timofeev ◽  
Alexander Shapovalov

The paper presents the calculated and experimental results of a comparison of two main types of brake resistor blocks structures. A mathematical model is given for finding the inductance of resistor blocks with spiral and tape resistive elements. Approaches had been carried out to determine the most advantageous configurations of the resistive unit in terms of minimizing its inductance value.


Author(s):  
Nghia Huynh ◽  
Carlos Montalvo

This report investigates the flight dynamics of a small-scale (2 ft) towed system using a quadcopter and actively controlled payload. A towed system includes a main driver to propel the system forward connected to a payload via a tether. The towed system here is unique, and in that the driver is a scratch built quadcopter while the payload is also a scratch built actively controlled aircraft. The payload is designed to carry a small instrument that must be sufficiently far away from all interferences created by a quadcopter. A fully non-linear full state model is created and utilized to reveal that oscillations in the payload are decreased with the introduction of a PD controller on the payload. An experimental setup is built to validate simulation results. Experiments show that an actively controlled payload can decrease the attitude oscillations of the payload.


Energies ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 277
Author(s):  
Yushan Wang ◽  
Baowei Song ◽  
Zhaoyong Mao

Electric vehicles (EVs) with wireless power transfer (WPT) systems are convenient, but WPT technology will produce a strong stray electromagnetic field (EMF) in the surrounding space when the system works with high power. Shielding coils can reduce stray EMF efficiently without additional control, and they have advantages of being simple, light, and cheap. In this paper, the series-opposing structure is compared systematically with the inductive structure based on circuit theory and electromagnetic field theory. Simplified circuit models are proposed to give an intuitive and comprehensive analysis of transfer efficiency. Electric field analysis and finite element analysis (FEA) is used to explain the functional principles of shielding coils and to compare the EMF distribution excited by two structures. The simulation results show that both structures decrease the mutual inductance and perform better than the system without shielding coils when they have the same transfer efficiency. Further, the inductive structure system performs best. The most important between two structures is that the shielding effects is independent of turns of shielding coils for inductive structure, while it can be adjusted by changing turns of shielding coils for the series-opposing structure. The experimental results show that the EMF is reduced by 65% for the inductive structure and 40% for the series-opposing structure. The theoretical analysis is confirmed by experimental results.


Sign in / Sign up

Export Citation Format

Share Document