scholarly journals Study of the constrictor properties of the neobladder under the influence of new chemical compounds in vivo experiment

Urology ◽  
2021 ◽  
Vol 25 (2) ◽  
Author(s):  
R.V. Savchuk ◽  
F.I. Kostyev ◽  
N.V. Shmatkova

The orthotopic ileocystoplasty is the most preferred urine derivation method for patients after removal of the bladder. The best quality of life, self-esteem, cosmetic appearance of one’s own body, and the possibility of physiological urination characterize the artificial bladder as the “gold standard” of urine derivation. There are a greater number of postoperative complications associated with the functionality of the neobladder, considering the complexity of orthotopic derivation of urine. The autocaturation is required in some patients day or night urinary incontinence, and in the other group, periodic urinary retention. Urinary retention is more common in women up to 43 % compared with 20 % in men, who need intermittent catheterization. The aim of investigation was to evaluate the possibility of pharmacological correction of contractile activity of mini-pigs neobladder in vivo, under the influence of new chemical compounds and the anticholinesterase drug nivalin. Materials and methods Experimental studies were performed on 21 female mini-pigs, with an average age of 6 to 14 months. The duration of the experiment was 12 months. Performing of enterocystometry in experimental animals is possible only under anesthesia and, accordingly, only part of the urodynamic parameters can be obtained. Results. The obtained results of in vivo experimental studies demonstrated the constrictor activity of the studied new chemical compounds. Compound I in comparison with the control group statistically significantly increased basal tone by 62.09 %, the amplitude of contractions by 37.34 %, and the duration of contractions by 35.71 %. The new chemical compound II, in comparison with the control group, showed less pronounced results of constrictor activity, so the basal tone statistically significantly increased by 38.86 %, and the amplitude of contractions by 15.0 %. Conclusion. Thus, under the influence of new chemical compounds in the conditions of an experimental artificial bladder, constrictor properties are proved, which require further research and study. In turn, cholinomimetic nivalin has prospects for use in urology, in particular in patients with hypoactive forms of artificial and neurogenic bladder.

2021 ◽  
pp. 63-67
Author(s):  
I.I. Khusnitdinov ◽  

Purpose. Еxperimental substantiation of the effectiveness of biocompatible biodegradable hydrogels based on hyaluronic acid and chitosan succinate as a carrier of ranibizumab in antiglaucoma operations. Material and methods. Hydrogel drainage (HD) was obtained immediately before surgery. A solution of ranibizumab (0.23 ml) was mixed with a solution of hyaluronic acid dialdehyde (0.5 ml), then a solution of chitosan succinate (0.5 ml) was added. Experimental studies were performed in 12 (12 eyes) healthy rabbits. The first group consisted of 6 eyes – 0.187 ml of ranibizumab per 1 ml of gel. In the control group, HD was used intraoperatively without the addition of ranibizumab (6 eyes). Morphological studies were performed on 7th, 21st, and 42nd days. Results. In experimental studies in vitro and in vivo, it was proved that ranibizumab, administered as a part of 0.1 ml of hydrogel drainage in the antiglaucoma surgery area is released within 3 weeks and suppresses vascularization, scarring of the operating area, and preserves the intrascleral cavity. The optimal concentration of ranibizumab was selected-0.02 ml in 0.1 ml of gel. Conclusion. The safety and effectiveness of the use of hydrogel drainage with ranibizumab based on hyaluronic acid dialdehyde and chitosan succinate in anti-glaucoma operations has been proven. Key words: experimental research, hydrogel drainage, ranibizumab, glaucoma surgery.


Author(s):  
Li Wang ◽  
Yiwen Zhang ◽  
Jiajun Zhong ◽  
Yuan Zhang ◽  
Shuisheng Zhou ◽  
...  

Objective: The efficacy of mesenchymal stem cell (MSC) therapy in acetaminophen-induced liver injury has been investigated in animal experiments, but individual studies with a small sample size cannot be used to draw a clear conclusion. Therefore, we conducted a systematic review and meta-analysis of preclinical studies to explore the potential of using MSCs in acetaminophen-induced liver injury. Methods: Eight databases were searched for studies reporting the effects of MSCs on acetaminophen hepatoxicity. The Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines were used. SYRCLE’s risk of bias tool for animal studies was applied to assess the methodological quality. A meta-analysis was performed by using RevMan 5.4 and STATA/SE 16.0 software. Results: Eleven studies involving 159 animals were included according to PRISMA statement guidelines. Significant associations were found for MSCs with the levels of alanine transaminase (ALT) (standardized mean difference (SMD) − 2.58, p < 0.0001), aspartate aminotransferase (AST) (SMD − 1.75, p = 0.001), glutathione (GSH) (SMD 3.7, p < 0.0001), superoxide dismutase (SOD) (SMD 1.86, p = 0.022), interleukin 10 (IL-10) (SMD 5.14, p = 0.0002) and tumor necrosis factor-α (TNF-α) (SMD − 4.48, p = 0.011) compared with those in the control group. The subgroup analysis showed that the tissue source of MSCs significantly affected the therapeutic efficacy (p < 0.05). Conclusion: Our meta-analysis results demonstrate that MSCs could be a potential treatment for acetaminophen-related liver injury.


1998 ◽  
Vol 275 (5) ◽  
pp. R1468-R1477 ◽  
Author(s):  
Scott K. Powers ◽  
Haydar A. Demirel ◽  
Heather K. Vincent ◽  
Jeff S. Coombes ◽  
Hisashi Naito ◽  
...  

Experimental studies examining the effects of regular exercise on cardiac responses to ischemia and reperfusion (I/R) are limited. Therefore, these experiments examined the effects of endurance exercise training on myocardial biochemical and physiological responses during in vivo I/R. Female Sprague-Dawley rats (4 mo old) were randomly assigned to either a sedentary control group or to an exercise training group. After a 10-wk endurance exercise training program, animals were anesthetized and mechanically ventilated, and the chest was opened by thoracotomy. Coronary occlusion was achieved by a ligature around the left coronary artery; occlusion was maintained for 20 min, followed by a 10-min period of reperfusion. Compared with untrained, exercise-trained animals maintained higher ( P < 0.05) peak systolic blood pressure throughout I/R. Training resulted in a significant ( P < 0.05) increase in ventricular nonprotein thiols, heat shock protein (HSP) 72, and the activities of superoxide dismutase (SOD), phosphofructokinase (PFK), and lactate dehydrogenase. Furthermore, compared with untrained controls, left ventricles from trained animals exhibited lower levels ( P < 0.05) of lipid peroxidation after I/R. These data demonstrate that endurance exercise training improves myocardial contractile performance and reduces lipid peroxidation during I/R in the rat in vivo. It appears likely that the improvement in the myocardial responses to I/R was related to training-induced increases in nonprotein thiols, HSP72, and the activities of SOD and PFK in the myocardium.


Cosmetics ◽  
2019 ◽  
Vol 6 (1) ◽  
pp. 16 ◽  
Author(s):  
Anton Shabunin ◽  
Vladimir Yudin ◽  
Irina Dobrovolskaya ◽  
Evgeny Zinovyev ◽  
Viktor Zubov ◽  
...  

An electrospinning technique was used for the preparation of a bilayered wound dressing consisting of a layer of aliphatic copolyamide nanofibers and a layer of composite nanofibers from chitosan and chitin nanofibrils filler. Processed dressings were compared with aliphatic copolyamide nanofiber-based wound dressings and control groups. Experimental studies (in vivo treatment of third-degree burns with this dressing) demonstrated that almost complete (up to 97.8%) epithelialization of the wound surface had been achieved within 28 days. Planimetric assessment demonstrated a significant acceleration of the wound healing process. Histological analysis of scar tissue indicated the presence of a significant number of microvessels and a low number of infiltrate cells. In the target group, there were no deaths or purulent complications, whereas in the control group these occurred in 25% and 59.7% of cases, respectively—and, in the copolyamide group, 0% and 11%, respectively. The obtained data show the high efficiency of application of the developed composite chitosan‒copolyamide wound dressings for the treatment of burn wounds.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 3820-3820
Author(s):  
Kuiying Ma ◽  
Riguo Fang ◽  
Lingling Yu ◽  
Chao Li ◽  
Zhongyu Shi ◽  
...  

Abstract Hematopoietic stem cells (HSCs) serve as the origin of the hematopoietic system, with the ability to differentiate into all blood cell lineages and self-renewal to sustain the hematopoiesis throughout life. Hematopoietic stem cell transplantation (HSCT) currently represents the most effective therapeutic strategies to treat hematological and non-hematological diseases. However, limited numbers of HSCs or poor homing capabilities into the bone marrow are still major hurdles for successful HSCT. Moreover, graft failure and delayed reconstitution due to inefficient engraftment, remains an important complication because of the high morbidity and mortality. Although ex vivo expansion of HSCs has been well studied for decades, which displays huge potentials for clinical application, exploration of novel targets to improve HSC homing and engraftment will provide new insights to enhance HSCT efficacy. To explore the chemical compounds enhancing the capabilities of homing and engraftment, we used CXCR4 (CD184) as the readout bio-marker, which is considered as the most essential chemokine receptor of HSPCs interacting with CXCL12 (SDF1) secreted in BM niche to support HSPCs homing, migration, proliferation and survival. We first performed chemical screening of 139 small molecules that can increase CD184 expression on cord blood (CB) CD34 + hematopoietic stem and progenitor cells (HSPCs). We concluded that treatment of CB CD34 + HSPCs for 16 hours with Lexibulin (Lex) or Vinblastine Sulfate (VS), both of which were microtubule polymerization (MP) inhibitors, could significantly promote the CD184 expression. Next, we optimized the MP inhibitors treatment conditions including dosage, treatment duration and culture time prior to treatment. The results proved that treatment with Lex or VS for 16 hours at 1μM was the optimal conditions to significantly enhance the CD184 expression of CD34 + HPSCs and LT-HSCs (CD34 +CD90 +CD45RA -), while maintaining robust cell survival, when compared with the DMSO control group. Moreover, we found that only when HSPCs were under culture within two days prior to small molecules treatment, CD184 expression was significantly increased by MP inhibitors while maintaining high viability, compared with DMSO control group. In order to assess the in vivo repopulating potential of the CB CD34 + HSPCs post treatment with MP inhibitors, we transplanted CB-HSPCs 16 hours post-treatment with Lex and VS respectively into irradiated nonobese diabetic (NOD)/Prkdc scid/IL-2Rγ null (NPG) mice. All transplanted mice of MP inhibitors-treated groups presented efficient engraftment, in multiple immune organs at 4-16 weeks post-transplantation, suggesting greater engraftment potential than the mock group, as measured by human CD45 of total CD45. Furthermore, hematopoietic reconstitution analysis indicated that the MP inhibitors -treated cells maintained different lineage distribution in peripheral blood (PB), bone marrow (BM) and spleen. Moreover, the equivalent phenotypes of pre- and post-treatment reveal the better reconstitution by MP inhibitors was independent of HSC-enrichment, Thus, short-term MP inhibitors treatment of CB CD34 + HSPCs enhances their homing and long-term engraftment. In conclusion, we demonstrated that short-term microtubule polymerization inhibition on human CB CD34 + HSPCs could not only enhance CD184 cell surface expression but also the capabilities of in vivo human HSCs homing and reconstitution via screening chemical compounds to increase CD184 expression and the following function evaluation study. Vinblastine Sulfate and Lexbulin were applied or registered as anti-cancer drugs for clinical use. Our study also indicates that MP inhibitors pretreatment of cells possesses significant translational implications, designating MP inhibitors as promising drug candidates to facilitate clinical HSCT. Figure 1 Figure 1. Disclosures Fang: EdiGene, Inc.: Current Employment.


Author(s):  
Arthur J. Wasserman ◽  
Azam Rizvi ◽  
George Zazanis ◽  
Frederick H. Silver

In cases of peripheral nerve damage the gap between proximal and distal stumps can be closed by suturing the ends together, using a nerve graft, or by nerve tubulization. Suturing allows regeneration but does not prevent formation of painful neuromas which adhere to adjacent tissues. Autografts are not reported to be as good as tubulization and require a second surgical site with additional risks and complications. Tubulization involves implanting a nerve guide tube that will provide a stable environment for axon proliferation while simultaneously preventing formation of fibrous scar tissue. Supplementing tubes with a collagen gel or collagen plus extracellular matrix factors is reported to increase axon proliferation when compared to controls. But there is no information regarding the use of collagen fibers to guide nerve cell migration through a tube. This communication reports ultrastructural observations on rat sciatic nerve regeneration through a silicone nerve stent containing crosslinked collagen fibers.Collagen fibers were prepared as described previously. The fibers were threaded through a silicone tube to form a central plug. One cm segments of sciatic nerve were excised from Sprague Dawley rats. A control group of rats received a silicone tube implant without collagen while an experimental group received the silicone tube containing a collagen fiber plug. At 4 and 6 weeks postoperatively, the implants were removed and fixed in 2.5% glutaraldehyde buffered by 0.1 M cacodylate containing 1.5 mM CaCl2 and balanced by 0.1 M sucrose. The explants were post-fixed in 1% OSO4, block stained in 1% uranyl acetate, dehydrated and embedded in Epon. Axons were counted on montages prepared at a total magnification of 1700x. Montages were viewed through a dissecting microscope. Thin sections were sampled from the proximal, middle and distal regions of regenerating sciatic plugs.


1990 ◽  
Vol 29 (03) ◽  
pp. 120-124
Author(s):  
R. P. Baum ◽  
E. Rohrbach ◽  
G. Hör ◽  
B. Kornhuber ◽  
E. Busse

The effect of triiodothyronine (T3) on the differentiation of cultured neuroblastoma (NB) cells was studied after 9 days of treatment with a dose of 10-4 M/106 cells per day. Using phase contrast microscopy, 30-50% of NB cells showed formation of neurites as a morphological sign of cellular differentiation. The initial rise of the mitosis rate was followed by a plateau. Changes in cyclic nucleotide content, in the triphosphates and in the activity of the enzyme ornithine decarboxylase (ODC) were assessed in 2 human and 2 murine cell lines to serve as biochemical parameters of the cell differentiation induced by T3. Whereas the cAMP level increased significantly (3 to 7 fold compared with its initial value), the cGMP value dropped to 30 to 50% of that of the control group. ATP and GTP increased about 200%, the ODC showed a decrease of about 50%. The present studies show a biphasic effect of T3 on neuroblastoma cells: the initial rise of mitotic activity is followed by increased cell differentiation starting from day 4 of the treatment.


1972 ◽  
Vol 27 (01) ◽  
pp. 114-120 ◽  
Author(s):  
A. A Hassanein ◽  
Th. A El-Garf ◽  
Z El-Baz

SummaryADP-induced platelet aggregation and calcium-induced platelet aggregation tests were studied in 14 diabetic patients in the fasting state and half an hour after an intravenous injection of 0.1 unit insulin/kg body weight. Platelet disaggregation was significantly diminished as compared to a normal control group, and their results were negatively correlated with the corresponding serum cholesterol levels. Insulin caused significant diminution in the ADP-induced platelet aggregation as a result of rapid onset of aggregation and disaggregation. There was also a significant increase in platelet disaggregation. In the calcium-induced platelet aggregation test, there was a significant shortening of the aggregation time, its duration, and the clotting time. The optical density fall due to platelet aggregation showed a significant increase. Insulin may have a role in correcting platelet disaggregation possibly through improvement in the intracellular enzymatic activity.


1970 ◽  
Vol 23 (02) ◽  
pp. 386-404 ◽  
Author(s):  
G Müller-Berghaus ◽  
H. G Lasch

SummaryThe role of Hageman factor in triggering intravascular coagulation has been studied in rabbits injected intravenously with Liquoid. Besides changes of coagulation parameters characteristic of consumption coagulopathy (e.g. decrease in platelet counts, fibrinogen levels, factor V activity), a pronounced drop in Hageman factor activity was observed after injection of Liquoid. Likewise, the partial thromboplastin time became prolonged.The activation of Hageman factor in vivo could be prevented by intravenous infusion of lysozyme. Twenty min after starting the lysozyme infusion, the partial thromboplastin time became prolonged from a mean of 29 sec to 108 sec. Animals infused with lysozyme and injected with a lethal dose of Liquoid did not develop a consumption coagulopathy. In the same manner, none of 10 animals treated with lysozyme developed the generalized Shwartzman reaction, whereas in the control group 19 out of 20 animals showed fibrin thrombi in the glomerular capillaries.From the present study it may be concluded that the intravascular coagulation process after intravenous injection of Liquoid is triggered by Hageman factor activation.


Author(s):  
Ni Made Ridla Parwata

Overtraining syndrome is a decrease in physical capacity, emotions and immunity due to training that is too often without adequate periods of rest. Overtraining is often experienced by athletes who daily undergo heavy training with short break periods. This research aims to look at the effect of overtraining aerobic physical exercise on memory in mice. The research method was experimental in vivo with the subject of adult male rat (Rattus Norvegicus) Winstar strain aged 8-10 weeks, body weight 200-250 gr. Divided into three groups, namely the control group, aerobic group and overtraining group. The results of memory tests with water E Maze showed an increase in the duration of travel time and the number of animal errors made by the overtraining group (p = 0.003). This study concludes that overtraining aerobic physical exercise can reduce memory in rat hippocampus.


Sign in / Sign up

Export Citation Format

Share Document