scholarly journals The Effectiveness of Sustainable Construction Materials by Using U-Shaped Composite Spacer Block (UCop)​

2019 ◽  
Vol 3 (1) ◽  
pp. 7-10
Author(s):  
Mohamed Saim ◽  

Nowadays in construction development, the needs of construction materials that have a unique reinforced concrete design with good quality, reasonable market price, and easy installation techniques has been prioritized. Therefore, this study aimed to produce an alternative new construction material that can fulfill the requirements. The U-shaped composite spacer block (UCop) through the production of Cement Bonded Particle Board (CBPB) as a specimen block was produced from the wood waste of carpentry work combined with Shorea spp. (Seraya red and white) particle size approximately 0.4mm - 2.00 mm. Then it was mixed together with Portland cement by using a ratio 1:2.5. The mixture was then added with Ammonia Chloride (Al2SO4) and Calcium Chloride (CaCl2) act as additives for this product. The physical and mechanical tests were conducted in this study. The results were showed that the thickness expansion was achieved an average of 1.79 %, which was passed the minimum requirement of MS934:1986 standards. However, the flexural strength did not meet the minimum standards. The poor mixing technique was attributed to the results. However, UCop still could contribute as an alternative solution in ease the concrete pouring process using a special binder, giving the spacer block any resistance to formwork of columns or beams is filled with concrete. The high-impact innovations of this product in construction such as it can help the process to be more efficient and to reduce construction costs, next indirectly preserve the nature.

2010 ◽  
Vol 654-656 ◽  
pp. 2644-2647 ◽  
Author(s):  
Joon Seok Park ◽  
In Kyu Kang ◽  
Jong Hwa Park ◽  
Joo Kyung Park ◽  
Hong Taek Kim ◽  
...  

In construction industries, new construction materials are needed to overcome some problems associated with the use of conventional construction materials due to the change of environmental and social requirements. Accordingly, the requirements to be satisfied in the design of civil engineering structures are diversified. As a new construction material in the civil engineering industries, fiber reinforced polymeric plastic (FRP) has a superior corrosion resistance, high specific strength/stiffness, etc. Therefore, such properties can be used to mitigate the problems associated with the use of conventional construction materials. Nowadays, new types of bridge piers and marine piles are being studied for new construction. They are made of concrete filled fiber reinforced polymeric plastic tubes (CFFT). In this paper, a new type of FRP-concrete composite pile which is composed of reinforced concrete filled FRP tube (RCFFT) is proposed to improve compressive strength as well as flexural strength of an RCFFT. The load carrying capacity of proposed RCFFT is discussed based on the result of experimental and analytical investigations.


2017 ◽  
Vol 44 (3) ◽  
pp. 223-231 ◽  
Author(s):  
Tomi Kaakkurivaara ◽  
Heikki Korpunen

Increasing forest bioenergy utilization is increasing the need to discover more applications for fly ash to avoid dumping charges. Our study concentrates on defining the work phases of reconstruction work and estimation of construction costs for a method using biomass based fly ash. Cost calculations were carried out for two mixed structures of fly ash and aggregate, two uniform structures of fly ash, and a conventional aggregate structure, where construction material volumes were calculated per kilometre for each structure. Our study defined suitable machines and their productivity per hour for different work phases. Cost calculation equations were formed for the used machines and the transportation of construction materials. Our study showed that building a 250 mm thick uniform layer of fly ash was the best alternative for minimizing construction costs. However, building a 500 mm thick uniform layer of fly ash was the best alternative for minimizing dumping charges.


2014 ◽  
Vol 90 (05) ◽  
pp. 628-635 ◽  
Author(s):  
Felix Böck

With concerns about climate change and the search for sustainable construction materials, significant attention is now being paid to Africa's natural resources. Ethiopia, known as Africa's political capital, has a rapidly expanding economy with increasing demand for new construction materials. Through public private partnerships projects the country is developing a sustainable business model to promote bamboo as a raw material. The subtropical zone of Ethiopia is home to approximately 65% of Africa's bamboo resources, an area of over 1 million hectares. Bamboo is potentially an ideal source of local, sustainable purpose-engineered building materials for growing cities not only in Ethiopia but across Africa. Production of conventional construction materials such as steel and concrete is expensive, highly energy intensive and unsustainable, requiring large quantities of water and is strongly dependent on imported raw materials. Bamboo is a renewable building material widely cultivated in Ethiopia but not yet utilized in modern construction. Structural Bamboo Products (SBP), similar to engineered wood products, have excellent potential to partially replace the use of more energy-intensive materials. Projects such as African Bamboo are taking steps in managing, cultivating and using Ethiopian bamboo species to help mitigate rapid deforestation in East Africa by creating alternative “wood” sources and sustainable business opportunities.


2019 ◽  
Vol 5 (12) ◽  
pp. 2587-2597
Author(s):  
Sajid Kamil Zemam ◽  
Sa'ad Fahad Resan ◽  
Musab Sabah Abed

Construction materials made of renewable resources have promising potential given their low cost, availability, and environmental friendliness. Although hemp fibers are the most extensively used fiber in the eco-friendly building sector, their unavailability hinders their application in Iraq. This study aimed to overcome the absence of hemp fiber in Iraq and develop a new sustainable construction material, strawcrete, by using wheat straw and traditional lime as the base binder. A comparable method of developing hempcrete was established. The experimental program adopted novel Mixing Sequence Techniques (MSTs), which depended on changing the sequence of mixed material with fixed proportions. The orientation of the applied load and the specimen’s aspect ratio were also studied. The mixing proportion was 4:1:1 (fiber/binder/water) by volume. Results showed that the developed strawcrete had a dry unit weight ranging from 645 kg/m3 to 734 kg/m3 and a compressive strength ranging from 1.8 MPa to 3.8 MPa. The enhanced physical and strength properties varied with the MST and loading orientation. The properties of the developed hempcrete were compared with those of strawcrete.


Materials ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 313
Author(s):  
Katarzyna Panasiuk ◽  
Krzysztof Dudzik

Composite materials are used in many industries. They are construction materials that are being used more and more often, which makes it necessary to accurately identify the process of their destruction. Recent decades have resulted in an intensive increase in diagnostic tests of structures and mechanical elements. Non-destructive testing (NDT) represents a group of test methods (surface and volumetric) that provide information about the properties of the tested element without changing its structure. The method of acoustic emission (AE) is also being used more frequently. Thanks to the ability to detect and locate signal sources, as well as to perform tests during operation, it is a method that is increasingly used in industry. In this article, the acoustic emission was used to analyze the changes occurring in composite materials. Obtained parameters helped to determine the signals originating from fibre delamination, fibre cracking, etc., as well as the starting point of these changes and the stress values at which these changes occurred. The analysis of acoustic emission signals recorded during the tests helped to determine the values of amplitudes characteristic for the destruction mechanisms of considered composite materials. Signals with an amplitude in the range of 30–41 dB may indicate elastic–plastic deformation of the matrix. Signals with an amplitude in the range of 42–50 dB indicate matrix cracks with the accompanying phenomenon of fibre delamination. Signals with amplitudes greater than 50 dB indicate fibre breakage. Based on the test results, the permissible stress was determined; when exceeded, the mechanisms of damage to the structure of composite materials accumulate. This stress limit for the tested material is 70 MPa. The use of the acoustic emission method in mechanical tests may contribute to a greater knowledge of composite materials used as a construction material, as well as determine the stresses allowable for a given structure.


2021 ◽  
Vol 3 (1) ◽  
pp. 1-7
Author(s):  
Juliana De Carvalho Izidoro ◽  
Denise Alves Fungaro ◽  
Luciana Cristina Viviani ◽  
Rogério Da Costa Silva

Brine sludge (BS) is an industrial waste generated in large amounts by the Chlor-alkali industry and, usually disposed into industrial landfills. Because BS contains several chemical compounds, also presents a potential environmental impact. The feasibility of the utilization of brine sludge wastes for the preparation of value-added materials was investigated. The characterization of two brine sludge samples was performed in terms of chemical and physical composition, particle size distribution, X-ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), and thermal analysis (DTA/TG). Elements like Ca, Si, Na, Mg, Al, Cl, and Fe were identified in the samples. The XRD results confirmed the crystalline nature of compounds and indicated that the main compounds in brine sludge samples were calcium carbonate, sodium chloride, magnesium hydroxide, and quartz. FTIR showed the presence of varying functional groups like carbonate, siloxane, and hydroxide. The two brine sludge samples can be considered as a fine powder with the mean diameter (d50) of 4.984 µm and 24.574 µm, for the BS from Santo André and Cubatão, respectively. The results indicated that the brine sludge samples presented favorable characteristics to use limestone filler and binder alternative to Portland cement in the nonstructural construction materials. The incorporation of brine sludge in geopolymeric materials is another possible use in sustainable construction material products. The production of value-added products from brine sludge will be an important contribution towards sustainable development adopted by the Chlor-alkali industry.


2021 ◽  
Vol 13 (1) ◽  
pp. 119-124
Author(s):  
Madan Chandra Maurya ◽  
Dinesh Kumar Malviya

Construction and demolition (C&D) wastes are generated with construction or demolition activities and consists of non biodegradable materials such as cement concrete, bricks, plaster, steel, rubble, woods, plastics etc. Large use of natural recourses for the production of construction materials such as concrete is a prime concern for sustainability. In order to minimize the environmental impacts in terms of energy consumption, pollution, waste disposal and global warming construction industries has started to look for new alternative sources which are capable of substituting the use of natural materials, also some attempts were taken to utilize the waste generated from the demolition of structures and construction activity. The main benefits from the recycling of C&D waste are conservation of natural resources, reduction in energy consumption, solution for waste disposal crisis, environment preservation. Its use reduces reliance on primary aggregates and lowers the environmental impact of construction.  


Author(s):  
Laura Platace ◽  
Sandra Gusta

Abstract One of the most important parameters that is currently used in public and private procurement in building process is the lowest price. The legislation of Latvia permits that an estimate forming process does not include criterions of quality, durability, and the potential high cost of maintaining the building during the exploitation time. That allows the constructor to reduce the cost estimate by using cheaper construction product or technology and does not let to provide the highest possible quality and the basic principle of sustainable construction. One of possible construction cost reduction solutions is the replacement of building material with equal building material, at the same time assessing the quality and replacement impact on the direct costs of estimate. The tasks of the research are: (1) to do literature review on what is an estimate, what an estimate includes and the basis of estimate; (2) to analyse the existing construction estimate, to evaluate the used construction materials and to study technical characteristics of materials, to explore a specific construction junction; (3) to replace the selected construction materials with analogous, thus reducing the direct costs of estimate; (4) to evaluate the affect of the price of the construction material on quality; (5) to compare the obtained cost estimate with the current cost estimate; (6) to implement laboratory research and to compare technical characteristics of the construction materials and analogue materials in order to check if they are the performing parameters that are defined in the declaration of performance. After comparing of the obtained direct costs of construction and analysing the quality of construction materials it is possible to provide the most appropriate offer of the direct costs of estimate to satisfy the customer’s interests.


2008 ◽  
Vol 569 ◽  
pp. 297-300
Author(s):  
Jae Ik Lee ◽  
Byung Wan Jo ◽  
Yeong Seok Yoo ◽  
Kyeong Ho Cheon

As a basic stage for developing new construction material utilizing sewage sludge ash, this study is identified by specific material characteristics through XRD, SEM, uniaxial compressive strength, porosity, and the drying shrinkage by manufacturing mortar with sewage sludge ash. The average drying shrinkage of sewage sludge ash mortar aged 7 days showed 88% of the strain of the one aged 28 days. The porosity of sewage sludge ash mortar was about 7~10%. The more quick lime and blast furnace slag were added, the less porosity appeared.


2020 ◽  
Vol 10 (15) ◽  
pp. 5303
Author(s):  
Jason Maximino C. Ongpeng ◽  
Edward Inciong ◽  
Vince Sendo ◽  
Crizia Soliman ◽  
Adrian Siggaoat

One of the major causes of an increase in the consumption of resources is the progress of the construction industry. Although it leads to new technologies, it heavily contributes to global warming. In this study, the use of sustainable construction materials from waste in brick production with mycelium as a binder is investigated. The ability of mycelium, the root fibers of fungi, obtained from microorganisms is used as stabilizing and binding material on bricks. Forty-eight brick specimens from six design mixes were produced with a size of 200 mm length × 90 mm width × 60 mm height. The mechanical tests conducted were compressive and flexural strength. The changes in weight were recorded against its age to monitor the progress of mycelium growth inside the brick specimens. From the test, bricks made from sawdust and rice bran with mycelium had an increase of 31.0% to 38.5% in average compressive strength compared to the non-mycelium bricks, respectively. Furthermore, the bricks with mycelium experienced an increase in both flexural strength and midpoint displacement for all types of bricks (rice bran, sawdust, and clay). These mycelium-induced bricks can reduce the use and consumption of traditional construction materials with enhanced mechanical properties.


Sign in / Sign up

Export Citation Format

Share Document