scholarly journals Antarctic ice sheet and climate evolution during the mid-Miocene

2021 ◽  
Author(s):  
Hannah Chorley

<p>The mid-Miocene provides an important example relevant to the response of the East Antarctic Ice Sheet (EAIS) to future anthropogenic climate change. Geological observations and earth system modelling show a broad link between declining carbon dioxide (CO2) concentrations and increasing size and sensitivity of ice sheets in the past. Future projections show CO2 concentrations could reach up to 1000 ppm before the end of the century, with global temperatures 4-5°C warmer - a climate not seen since the mid-Miocene. This time period is therefore becoming increasingly important to understanding future Antarctic Ice Sheet (AIS) response, as CO2 concentrations are already at Pliocene levels (∼400 ppm). An improved, more detailed understanding of the response of the AIS to past climatic variability provides important context for interpreting how the AIS will respond to future climate change under high CO2 scenarios. </p> <p>A dynamic EAIS characterised the mid-Miocene, with major variations in both volume and extent of terrestrial and marine ice sheets. While global climate remained warmer than present-day throughout, this interval was punctuated by an episode of unusual warmth within the Miocene Climatic Optimum (MCO, ∼17-15 Ma). The MCO is one of the warmest intervals since the onset of Antarctic glaciation, with CO2 concentrations of up to 840 ppm during peak warmth and coastal regions characterised by temperate vegetation and mean summer temperatures (MST) of up to ∼10°C. This warmth terminated with major cooling and ice expansion across the mid-Miocene Climate Transition (MMCT, ∼14.8-13.8 Ma). </p> <p>A ∼50 m thick ice-cemented terrestrial glacial sequence was recovered in drill cores from the Friis Hills, McMurdo Dry Valleys in 2016. A chronostratigraphic framework for the cores based on magnetostratigraphy, 40Ar/39Ar isotopic ages, and limited biostratigraphic constraints, revealed 15 sedimentary cycles of the advance and retreat of a temperate alpine glacier system between ∼15.1-13.8 Ma. Each cycle consists of traction tills and moraines deposited during ice advance and intervening glacio-fluvial to glacio-lacustrine lithofacies deposited during ice retreat. This record highlights the influence of increasing glacial-interglacial variability across the MMCT, with till facies becoming progressively thicker, drier and of wider provenance post 14.4 Ma, while interglacial sediments remained similar to those that characterised the late-MCO, sustaining tundra vegetation and MSTs of 6-7°C. </p> <p>An ensemble of model simulations were produced for a recently published mid-Miocene topography and a range of CO2 concentrations, Transantarctic Mountain (TAM) uplift scenarios, and glacial-interglacial orbits in order to better understand the mechanisms driving EAIS variability during the early to mid-Miocene. Sedimentological and palynological data for glacial-interglacial periods of the early to mid-Miocene provide the primary constraint on ice extent and temperature variability. Results of this model-data comparison were used to assess the likely boundary conditions for the MCO and MMCT, and inferred TAM elevations of 300-500 m lower than present-day, modelled CO2 concentrations up to 780 ppm during periods of peak warmth, and a transition to lower CO2 across the MMCT. The onset of marine-based ice advance across the continental shelf was inferred between 280-460 ppm modelled CO2, however, the persistence of a significantly retreated, thick EAIS under even the highest modelled CO2 concentrations is not consistent with proxy data constraints and implies a strong hysteresis effect in the model. The presence of localised tundra vegetation under low CO2 concentrations in the model supports the persistence of higher plants in coastal lowlands post-MMCT, following their extinction at higher elevations after ∼13.8 Ma. </p> <p>Terrestrial, marine, and far-field records were reconciled to assess glacial-interglacial variability and evolution of the EAIS across the mid-Miocene. While 15 cycles were identified within the Friis Hills record, only 7.5 of these are well enough constrained by the age model to be correlated to climate cycles in the δ 18O record, spanning ∼160 ka of the late-MCO and inferring a terrestrial-terminating AIS responding to local insolation controlled by precession. This is consistent with eccentricity modulated precession control implied in other coastal Antarctic and far-field records during the MCO, but results presented here also support a two stepped climatic shift at ∼14.6 and ∼13.8 Ma during the MMCT. This stepwise shift in climatic cooling is attributed to declining CO2, with two boundaries in long-term atmospheric CO2 concentrations crossed during this time: (1) A shift to CO2 concentrations below 460 ppm in the model supported the growth of annual sea-ice and advance of small-scale marine-based ice into the Ross Sea. (2) At 13.8 Ma, a further decline in CO2 concentrations to below 280 ppm supported perennial sea-ice development, limiting the influence of warm, deep-water upwelling, resulting in large-scale marine-based ice advance, ultimately stabilising the AIS. This stepwise mid-Miocene cooling implies threshold behaviour of the AIS during a long-term 200-300 ppm general decline in CO2 proxy records. </p>

2021 ◽  
Author(s):  
Hannah Chorley

<p>The mid-Miocene provides an important example relevant to the response of the East Antarctic Ice Sheet (EAIS) to future anthropogenic climate change. Geological observations and earth system modelling show a broad link between declining carbon dioxide (CO2) concentrations and increasing size and sensitivity of ice sheets in the past. Future projections show CO2 concentrations could reach up to 1000 ppm before the end of the century, with global temperatures 4-5°C warmer - a climate not seen since the mid-Miocene. This time period is therefore becoming increasingly important to understanding future Antarctic Ice Sheet (AIS) response, as CO2 concentrations are already at Pliocene levels (∼400 ppm). An improved, more detailed understanding of the response of the AIS to past climatic variability provides important context for interpreting how the AIS will respond to future climate change under high CO2 scenarios. </p> <p>A dynamic EAIS characterised the mid-Miocene, with major variations in both volume and extent of terrestrial and marine ice sheets. While global climate remained warmer than present-day throughout, this interval was punctuated by an episode of unusual warmth within the Miocene Climatic Optimum (MCO, ∼17-15 Ma). The MCO is one of the warmest intervals since the onset of Antarctic glaciation, with CO2 concentrations of up to 840 ppm during peak warmth and coastal regions characterised by temperate vegetation and mean summer temperatures (MST) of up to ∼10°C. This warmth terminated with major cooling and ice expansion across the mid-Miocene Climate Transition (MMCT, ∼14.8-13.8 Ma). </p> <p>A ∼50 m thick ice-cemented terrestrial glacial sequence was recovered in drill cores from the Friis Hills, McMurdo Dry Valleys in 2016. A chronostratigraphic framework for the cores based on magnetostratigraphy, 40Ar/39Ar isotopic ages, and limited biostratigraphic constraints, revealed 15 sedimentary cycles of the advance and retreat of a temperate alpine glacier system between ∼15.1-13.8 Ma. Each cycle consists of traction tills and moraines deposited during ice advance and intervening glacio-fluvial to glacio-lacustrine lithofacies deposited during ice retreat. This record highlights the influence of increasing glacial-interglacial variability across the MMCT, with till facies becoming progressively thicker, drier and of wider provenance post 14.4 Ma, while interglacial sediments remained similar to those that characterised the late-MCO, sustaining tundra vegetation and MSTs of 6-7°C. </p> <p>An ensemble of model simulations were produced for a recently published mid-Miocene topography and a range of CO2 concentrations, Transantarctic Mountain (TAM) uplift scenarios, and glacial-interglacial orbits in order to better understand the mechanisms driving EAIS variability during the early to mid-Miocene. Sedimentological and palynological data for glacial-interglacial periods of the early to mid-Miocene provide the primary constraint on ice extent and temperature variability. Results of this model-data comparison were used to assess the likely boundary conditions for the MCO and MMCT, and inferred TAM elevations of 300-500 m lower than present-day, modelled CO2 concentrations up to 780 ppm during periods of peak warmth, and a transition to lower CO2 across the MMCT. The onset of marine-based ice advance across the continental shelf was inferred between 280-460 ppm modelled CO2, however, the persistence of a significantly retreated, thick EAIS under even the highest modelled CO2 concentrations is not consistent with proxy data constraints and implies a strong hysteresis effect in the model. The presence of localised tundra vegetation under low CO2 concentrations in the model supports the persistence of higher plants in coastal lowlands post-MMCT, following their extinction at higher elevations after ∼13.8 Ma. </p> <p>Terrestrial, marine, and far-field records were reconciled to assess glacial-interglacial variability and evolution of the EAIS across the mid-Miocene. While 15 cycles were identified within the Friis Hills record, only 7.5 of these are well enough constrained by the age model to be correlated to climate cycles in the δ 18O record, spanning ∼160 ka of the late-MCO and inferring a terrestrial-terminating AIS responding to local insolation controlled by precession. This is consistent with eccentricity modulated precession control implied in other coastal Antarctic and far-field records during the MCO, but results presented here also support a two stepped climatic shift at ∼14.6 and ∼13.8 Ma during the MMCT. This stepwise shift in climatic cooling is attributed to declining CO2, with two boundaries in long-term atmospheric CO2 concentrations crossed during this time: (1) A shift to CO2 concentrations below 460 ppm in the model supported the growth of annual sea-ice and advance of small-scale marine-based ice into the Ross Sea. (2) At 13.8 Ma, a further decline in CO2 concentrations to below 280 ppm supported perennial sea-ice development, limiting the influence of warm, deep-water upwelling, resulting in large-scale marine-based ice advance, ultimately stabilising the AIS. This stepwise mid-Miocene cooling implies threshold behaviour of the AIS during a long-term 200-300 ppm general decline in CO2 proxy records. </p>


Eos ◽  
2017 ◽  
Vol 98 ◽  
Author(s):  
Terence Hughes

A recent paper in Reviews of Geophysics discusses how climate change could affect ice streams, ice sheets, ice shelves, and sea ice in Antarctica.


2015 ◽  
Vol 9 (3) ◽  
pp. 881-903 ◽  
Author(s):  
B. de Boer ◽  
A. M. Dolan ◽  
J. Bernales ◽  
E. Gasson ◽  
H. Goelzer ◽  
...  

Abstract. In the context of future climate change, understanding the nature and behaviour of ice sheets during warm intervals in Earth history is of fundamental importance. The late Pliocene warm period (also known as the PRISM interval: 3.264 to 3.025 million years before present) can serve as a potential analogue for projected future climates. Although Pliocene ice locations and extents are still poorly constrained, a significant contribution to sea-level rise should be expected from both the Greenland ice sheet and the West and East Antarctic ice sheets based on palaeo sea-level reconstructions. Here, we present results from simulations of the Antarctic ice sheet by means of an international Pliocene Ice Sheet Modeling Intercomparison Project (PLISMIP-ANT). For the experiments, ice-sheet models including the shallow ice and shelf approximations have been used to simulate the complete Antarctic domain (including grounded and floating ice). We compare the performance of six existing numerical ice-sheet models in simulating modern control and Pliocene ice sheets by a suite of five sensitivity experiments. We include an overview of the different ice-sheet models used and how specific model configurations influence the resulting Pliocene Antarctic ice sheet. The six ice-sheet models simulate a comparable present-day ice sheet, considering the models are set up with their own parameter settings. For the Pliocene, the results demonstrate the difficulty of all six models used here to simulate a significant retreat or re-advance of the East Antarctic ice grounding line, which is thought to have happened during the Pliocene for the Wilkes and Aurora basins. The specific sea-level contribution of the Antarctic ice sheet at this point cannot be conclusively determined, whereas improved grounding line physics could be essential for a correct representation of the migration of the grounding-line of the Antarctic ice sheet during the Pliocene.


2020 ◽  
Author(s):  
Marisa Montoya ◽  
Jorge Alvarez-Solas ◽  
Alexander Robinson ◽  
Javier Blasco ◽  
Ilaria Tabone ◽  
...  

&lt;p&gt;Ice sheets, in particular the Antarctic Ice Sheet (AIS), are considered as potential tipping elements (TEs) of the Earth system. The mechanism underlying tipping is the existence of positive feedbacks leading to self-amplification processes that, once triggered, dominate the dynamics of the system. Positive feedbacks can also lead to hysteresis, with implications for reversibility in the context of long-term future climate change. The main mechanism underlying ice-sheet hysteresis is the positive surface mass balance-elevation feedback.&amp;#160; Marine-based ice sheets, such as the western sector of the AIS, are furthermore subject to specific instability mechanisms that can potentially also lead to hysteresis. Simulations with ice-sheet models have robustly confirmed the presence of different degrees of hysteresis in the evolution of the AIS volume with respect to model parameters and/or climate forcing, suggesting that ice-sheet changes are potentially irreversible on long timescales. Nevertheless, AIS hysteresis is only now becoming a focus of more intensive modeling efforts, including active oceanic forcing in particular. Here, we investigate the hysteresis of the AIS in a three-dimensional hybrid ice-sheet--ice-shelf model with respect to individual atmospheric forcing, ocean forcing and both. The aim is to obtain a probabilistic assessment of the AIS hysteresis and of its critical temperature thresholds by investigating the effect of structural uncertainty, including the representation of ice-sheet dynamics, basal melting and internal feedbacks.&lt;/p&gt;


2020 ◽  
Author(s):  
Michele Petrini ◽  
Colleoni Florence ◽  
Kirchner Nina ◽  
Hughes Anna L. C. ◽  
Camerlenghi Angelo ◽  
...  

&lt;p&gt;An interconnected complex of ice sheets, collectively referred to as the Eurasian ice sheets, covered north-westernmost Europe, Russia and the Barents Sea during the Last Glacial Maximum (around 21 ky BP), connecting to the Scandinavian Ice Sheet to the south. Due to common geological features, the Barents Sea component of this ice complex is seen as a paleo-analogue for the present-day West Antarctic Ice Sheet. Investigating key processes driving the last deglaciation of the Barents Sea Ice Sheet represents an important tool to interpret recent observations in Antarctica over the multi-millennial temporal scale of glaciological changes. We present results from a statistical ensemble of ice sheet model simulations of the last deglaciation of the Barents Sea Ice Sheet, all forced with transient atmospheric and oceanic conditions derived from AOGCM simulations. The ensemble of transient simulations is evaluated against the data-based DATED-1 reconstruction. We find that the simulated deglaciation of the Barents Sea Ice Sheet is primarily driven by the oceanic forcing, with sea level rise and surface melting amplifying the ice sheet sensitivity to ocean warming over relatively short intervals. Despite a large model/data mismatch at the western and eastern ice sheet margins, the simulated and DATED-1 deglaciation scenarios agree well on the timing of the deglaciation of the central and northern Barents Sea. The primary role played by ocean forcing in our simulations suggests that the long-term stability of the West Antarctic Ice Sheet could be at stake if the current trend in ocean warming will continue.&lt;/p&gt;


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Alizée Chemison ◽  
Gilles Ramstein ◽  
Adrian M. Tompkins ◽  
Dimitri Defrance ◽  
Guigone Camus ◽  
...  

AbstractStudies about the impact of future climate change on diseases have mostly focused on standard Representative Concentration Pathway climate change scenarios. These scenarios do not account for the non-linear dynamics of the climate system. A rapid ice-sheet melting could occur, impacting climate and consequently societies. Here, we investigate the additional impact of a rapid ice-sheet melting of Greenland on climate and malaria transmission in Africa using several malaria models driven by Institute Pierre Simon Laplace climate simulations. Results reveal that our melting scenario could moderate the simulated increase in malaria risk over East Africa, due to cooling and drying effects, cause a largest decrease in malaria transmission risk over West Africa and drive malaria emergence in southern Africa associated with a significant southward shift of the African rain-belt. We argue that the effect of such ice-sheet melting should be investigated further in future public health and agriculture climate change risk assessments.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Sofia Ribeiro ◽  
Audrey Limoges ◽  
Guillaume Massé ◽  
Kasper L. Johansen ◽  
William Colgan ◽  
...  

AbstractHigh Arctic ecosystems and Indigenous livelihoods are tightly linked and exposed to climate change, yet assessing their sensitivity requires a long-term perspective. Here, we assess the vulnerability of the North Water polynya, a unique seaice ecosystem that sustains the world’s northernmost Inuit communities and several keystone Arctic species. We reconstruct mid-to-late Holocene changes in sea ice, marine primary production, and little auk colony dynamics through multi-proxy analysis of marine and lake sediment cores. Our results suggest a productive ecosystem by 4400–4200 cal yrs b2k coincident with the arrival of the first humans in Greenland. Climate forcing during the late Holocene, leading to periods of polynya instability and marine productivity decline, is strikingly coeval with the human abandonment of Greenland from c. 2200–1200 cal yrs b2k. Our long-term perspective highlights the future decline of the North Water ecosystem, due to climate warming and changing sea-ice conditions, as an important climate change risk.


2001 ◽  
Vol 47 (157) ◽  
pp. 271-282 ◽  
Author(s):  
Richard C.A. Hindmarsh ◽  
E. Le Meur

AbstractMarine ice sheets with mechanics described by the shallow-ice approximation by definition do not couple mechanically with the shelf. Such ice sheets are known to have neutral equilibria. We consider the implications of this for their dynamics and in particular for mechanisms which promote marine ice-sheet retreat. The removal of ice-shelf buttressing leading to enhanced flow in grounded ice is discounted as a significant influence on mechanical grounds. Sea-level rise leading to reduced effective pressures under ice streams is shown to be a feasible mechanism for producing postglacial West Antarctic ice-sheet retreat but is inconsistent with borehole evidence. Warming thins the ice sheet by reducing the average viscosity but does not lead to grounding-line retreat. Internal oscillations either specified or generated via a MacAyeal–Payne thermal mechanism promote migration. This is a noise-induced drift phenomenon stemming from the neutral equilibrium property of marine ice sheets. This migration occurs at quite slow rates, but these are sufficiently large to have possibly played a role in the dynamics of the West Antarctic ice sheet after the glacial maximum. Numerical experiments suggest that it is generally true that while significant changes in thickness can be caused by spatially uniform changes, spatial variability coupled with dynamical variability is needed to cause margin movement.


Author(s):  
Alan M. Haywood ◽  
Andy Ridgwell ◽  
Daniel J. Lunt ◽  
Daniel J. Hill ◽  
Matthew J. Pound ◽  
...  

Given the inherent uncertainties in predicting how climate and environments will respond to anthropogenic emissions of greenhouse gases, it would be beneficial to society if science could identify geological analogues to the human race’s current grand climate experiment . This has been a focus of the geological and palaeoclimate communities over the last 30 years, with many scientific papers claiming that intervals in Earth history can be used as an analogue for future climate change. Using a coupled ocean–atmosphere modelling approach, we test this assertion for the most probable pre-Quaternary candidates of the last 100 million years: the Mid- and Late Cretaceous, the Palaeocene–Eocene Thermal Maximum (PETM), the Early Eocene, as well as warm intervals within the Miocene and Pliocene epochs. These intervals fail as true direct analogues since they either represent equilibrium climate states to a long-term CO 2 forcing—whereas anthropogenic emissions of greenhouse gases provide a progressive (transient) forcing on climate—or the sensitivity of the climate system itself to CO 2 was different. While no close geological analogue exists, past warm intervals in Earth history provide a unique opportunity to investigate processes that operated during warm (high CO 2 ) climate states. Palaeoclimate and environmental reconstruction/modelling are facilitating the assessment and calculation of the response of global temperatures to increasing CO 2 concentrations in the longer term (multiple centuries); this is now referred to as the Earth System Sensitivity, which is critical in identifying CO 2 thresholds in the atmosphere that must not be crossed to avoid dangerous levels of climate change in the long term. Palaeoclimatology also provides a unique and independent way to evaluate the qualities of climate and Earth system models used to predict future climate.


2021 ◽  
Author(s):  
Joanna Davies ◽  
Anders Møller Mathiasen ◽  
Kristiane Kristensen ◽  
Christof Pearce ◽  
Marit-Solveig Seidenkrantz

&lt;p&gt;The polar regions exhibit some of the most visible signs of climate change globally; annual mass loss from the Greenland Ice Sheet (GrIS) has quadrupled in recent decades, from 51 &amp;#177; 65 Gt yr&lt;sup&gt;&amp;#8722;1&lt;/sup&gt; (1992-2001) to 211 &amp;#177; 37 Gt yr&lt;sup&gt;&amp;#8722;1&lt;/sup&gt; (2002-2011). This can partly be attributed to the widespread retreat and speed-up of marine-terminating glaciers. The Zachariae Isstr&amp;#248;m (ZI) is an outlet glacier of the Northeast Greenland Ice Steam (NEGIS), one of the largest ice streams of the GrIS (700km), draining approximately 12% of the ice sheet interior. Observations show that the ZI began accelerating in 2000, resulting in the collapse of the floating ice shelf between 2002 and 2003. By 2014, the ice shelf extended over an area of 52km&lt;sup&gt;2&lt;/sup&gt;, a 95% decrease in area since 2002, where it extended over 1040km&lt;sup&gt;2&lt;/sup&gt;. Paleo-reconstructions provide an opportunity to extend observational records in order to understand the oceanic and climatic processes governing the position of the grounding zone of marine terminating glaciers and the extent of floating ice shelves. Such datasets are thus necessary if we are to constrain the impact of future climate change projections on the Arctic cryosphere.&lt;/p&gt;&lt;p&gt;A multi-proxy approach, involving grain size, geochemical, foraminiferal and sedimentary analysis was applied to marine sediment core DA17-NG-ST8-92G, collected offshore of the ZI, on &amp;#160;the Northeast Greenland Shelf. The aim was to reconstruct changes in the extent of the ZI and the palaeoceanographic conditions throughout the Early to Mid Holocene (c.a. 12,500-5,000 cal. yrs. BP). Evidence from the analysis of these datasets indicates that whilst there has been no grounded ice at the site over the last 12,500 years, the ice shelf of the ZI extended as a floating ice shelf over the site between 12,500 and 9,200 cal. yrs. BP, with the grounding line further inland from our study site. This was followed by a retreat in the ice shelf extent during the Holocene Thermal Maximum; this was likely to have been governed, in part, by basal melting driven by Atlantic Water (AW) recirculated from Svalbard or from the Arctic Ocean. Evidence from benthic foraminifera suggest that there was a shift from the dominance of AW to Polar Water at around 7,500 cal. yrs. BP, although the ice shelf did not expand again despite of this cooling of subsurface waters.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document