scholarly journals Antarctic microalgae: physiological acclimation to environmental change

2021 ◽  
Author(s):  
◽  
Meghana Amarnath Rajanahally

<p>Sea ice algal communities play a very significant role in primary production in the Southern Ocean, being the only source of fixed carbon for all other life in this habitat and contributing up to 22% of Antarctic primary production in ice-covered regions. Therefore it is important to understand how these organisms adapt to this highly variable and harsh environment Previous studies have described their acclimation to changes in environmental conditions but we still do not understand the physiological basis of these responses. This study examines the effects of varying levels of photosynthetically active radiation (PAR), ultraviolet-B (UV-B) radiation and temperature on bottom ice algal communities and individual algal species using pulse-amplitude modulation (PAM) fluorometry, the production of mycosporine-like amino acids (MAAs) and superoxide dismutase (SOD) activity.  The experiments conducted in this thesis show that bottom ice algae are capable of acclimating to the higher levels of PAR and temperature that would likely be experienced during sea ice melt As temperature was increased past a threshold temperature of thylakoid integrity, it became the major stressor, causing decreases in photosynthetic yield at around 14°C, even at ambient PAR exposure. Similarly, a thylakoid integrity experiment independently suggested that the critical temperature for the onset of thylakoid damage was 14°C, which correlated well to the 14°C incubation observations, although this is a temperature that sea ice algae are unlikely to encounter in the polar regions.  It is likely that sea ice algae produce additional MAAs, known to be cellular sunscreens, in response to increasing levels of UV-B, allowing tolerance of this stressor. This is the first study in the marine environment to demonstrate that algae can produce MAAs in response to increasing PAR and temperature, even in the absence of UV-B, indicating that MAAs may be more than just sunscreen compounds. The levels of UV-B used in this study were representative of those likely to be faced by the algae during sea ice melt. With increasing temperature, the algae maintained photosynthetic yield and decreased MAA production, implying that the rise in temperature aids the algae with another element of photoprotection such as enzymatic repair. As these results contrasted with previous studies of bottom ice algae that showed no additional MAA production in response to higher levels of PAR and UV-B, it was hypothesized that this difference was attributed to variations in species composition that could modify the productivity of the community.  The short-term effects of increasing PAR and UV -B on three unialgal cultures of Thalassiosira sp., Fragilariopsis sp. (from the Ross Sea), and Chaetoceros sp. (from the Antarctic Peninsula) were therefore examined. In unialgal culture studies, these three algal species showed higher tolerance to PAR and UV-B compared to that of the mixed culture of bottom ice algae, although there remained species-specific variation. Both Ross Sea species showed increasing photosynthetic yield with increasing PAR and UV-B exposure, but there was a difference in the tolerance shown by the two species. Thalassiosira sp. tolerated higher PAR and lower UV-B and Fragilariopsis tolerated lower PAR and higher UV-B. Both species produced MAAs in response to these stressors, indicating that these compounds allowed the algae to decrease levels of photoinhibition.  In comparison to the Ross Sea, the Antarctic Peninsula is an area of higher environmental variability and change, meaning that the species in both regions could have varying acclimatory capabilities. Although data from three species alone cannot conclusively demonstrate that algae from different regions have different acclimatory capabilities, they do illustrate considerable variation between species. Chaetoceros sp. from the Antarctic Peninsula region showed a higher tolerance to PAR and UV-B compared to the Ross Sea species. The former species showed an increase in photosynthetic yield in response to increasing PAR and this was accompanied by a lack of MAA production in response to the experimental levels of PAR, which indicates that the two Ross Sea species have a higher tolerance to PAR compared to the Antarctic Peninsula species. Chaetoceros sp. from the Antarctic Peninsula showed an increase in photosynthetic yield in response to high UV-B exposures, accompanied by MAA production and had no signs of photoinhibition.  A further experiment was conducted to address the weaknesses in the initial methodologies, particularly related to control conditions in the short-term experiments. Common species from the Ross Sea, Antarctic Peninsula and the Arctic were exposed to a combination of increased PAR and UV-B over a period of seven days to compare acclimatory abilities using PAM and SOD activity. Thalassiosira antarctica from the Ross Sea, Chaetoceros socialis from the Antarctic Peninsula and C. socialis from the Arctic showed no significant change in quantum yield over the incubation period. This further highlights the importance of running experiments with compounding factors, as an increase in one factor could alleviate the negative effect of the other. There was an unexpected lack of change in SOD activity for all species under all treatments applied, which could indicate that the levels of PAR and UV-B used were not high enough to cause stress in these species. This work also points to the need to assay for various antioxidants, as algae are known to rely on a network of antioxidants in their defence against environmental stresses.  The data from this thesis clarify the influence of PAR, UV-B and temperature on sea ice algae, and could help better evaluate the fate of these communities under various climate change scenarios. This study has made important steps towards understanding the acclimatory abilities of sea ice algae. Increasing knowledge of sea ice algal physiology, particularly of photosynthetic health in response to environmental change, will help improve predictions of productivity in the most productive ocean on this planet. Algal tolerance to increasing PAR, UV-B and temperature is remarkable, and this ability could be crucial in the context of future climate change. The productivity of these autotrophic microorganisms strongly influences secondary production that ties their fate to that of all other life in the Southern Ocean.</p>

2021 ◽  
Author(s):  
◽  
Meghana Amarnath Rajanahally

<p>Sea ice algal communities play a very significant role in primary production in the Southern Ocean, being the only source of fixed carbon for all other life in this habitat and contributing up to 22% of Antarctic primary production in ice-covered regions. Therefore it is important to understand how these organisms adapt to this highly variable and harsh environment Previous studies have described their acclimation to changes in environmental conditions but we still do not understand the physiological basis of these responses. This study examines the effects of varying levels of photosynthetically active radiation (PAR), ultraviolet-B (UV-B) radiation and temperature on bottom ice algal communities and individual algal species using pulse-amplitude modulation (PAM) fluorometry, the production of mycosporine-like amino acids (MAAs) and superoxide dismutase (SOD) activity.  The experiments conducted in this thesis show that bottom ice algae are capable of acclimating to the higher levels of PAR and temperature that would likely be experienced during sea ice melt As temperature was increased past a threshold temperature of thylakoid integrity, it became the major stressor, causing decreases in photosynthetic yield at around 14°C, even at ambient PAR exposure. Similarly, a thylakoid integrity experiment independently suggested that the critical temperature for the onset of thylakoid damage was 14°C, which correlated well to the 14°C incubation observations, although this is a temperature that sea ice algae are unlikely to encounter in the polar regions.  It is likely that sea ice algae produce additional MAAs, known to be cellular sunscreens, in response to increasing levels of UV-B, allowing tolerance of this stressor. This is the first study in the marine environment to demonstrate that algae can produce MAAs in response to increasing PAR and temperature, even in the absence of UV-B, indicating that MAAs may be more than just sunscreen compounds. The levels of UV-B used in this study were representative of those likely to be faced by the algae during sea ice melt. With increasing temperature, the algae maintained photosynthetic yield and decreased MAA production, implying that the rise in temperature aids the algae with another element of photoprotection such as enzymatic repair. As these results contrasted with previous studies of bottom ice algae that showed no additional MAA production in response to higher levels of PAR and UV-B, it was hypothesized that this difference was attributed to variations in species composition that could modify the productivity of the community.  The short-term effects of increasing PAR and UV -B on three unialgal cultures of Thalassiosira sp., Fragilariopsis sp. (from the Ross Sea), and Chaetoceros sp. (from the Antarctic Peninsula) were therefore examined. In unialgal culture studies, these three algal species showed higher tolerance to PAR and UV-B compared to that of the mixed culture of bottom ice algae, although there remained species-specific variation. Both Ross Sea species showed increasing photosynthetic yield with increasing PAR and UV-B exposure, but there was a difference in the tolerance shown by the two species. Thalassiosira sp. tolerated higher PAR and lower UV-B and Fragilariopsis tolerated lower PAR and higher UV-B. Both species produced MAAs in response to these stressors, indicating that these compounds allowed the algae to decrease levels of photoinhibition.  In comparison to the Ross Sea, the Antarctic Peninsula is an area of higher environmental variability and change, meaning that the species in both regions could have varying acclimatory capabilities. Although data from three species alone cannot conclusively demonstrate that algae from different regions have different acclimatory capabilities, they do illustrate considerable variation between species. Chaetoceros sp. from the Antarctic Peninsula region showed a higher tolerance to PAR and UV-B compared to the Ross Sea species. The former species showed an increase in photosynthetic yield in response to increasing PAR and this was accompanied by a lack of MAA production in response to the experimental levels of PAR, which indicates that the two Ross Sea species have a higher tolerance to PAR compared to the Antarctic Peninsula species. Chaetoceros sp. from the Antarctic Peninsula showed an increase in photosynthetic yield in response to high UV-B exposures, accompanied by MAA production and had no signs of photoinhibition.  A further experiment was conducted to address the weaknesses in the initial methodologies, particularly related to control conditions in the short-term experiments. Common species from the Ross Sea, Antarctic Peninsula and the Arctic were exposed to a combination of increased PAR and UV-B over a period of seven days to compare acclimatory abilities using PAM and SOD activity. Thalassiosira antarctica from the Ross Sea, Chaetoceros socialis from the Antarctic Peninsula and C. socialis from the Arctic showed no significant change in quantum yield over the incubation period. This further highlights the importance of running experiments with compounding factors, as an increase in one factor could alleviate the negative effect of the other. There was an unexpected lack of change in SOD activity for all species under all treatments applied, which could indicate that the levels of PAR and UV-B used were not high enough to cause stress in these species. This work also points to the need to assay for various antioxidants, as algae are known to rely on a network of antioxidants in their defence against environmental stresses.  The data from this thesis clarify the influence of PAR, UV-B and temperature on sea ice algae, and could help better evaluate the fate of these communities under various climate change scenarios. This study has made important steps towards understanding the acclimatory abilities of sea ice algae. Increasing knowledge of sea ice algal physiology, particularly of photosynthetic health in response to environmental change, will help improve predictions of productivity in the most productive ocean on this planet. Algal tolerance to increasing PAR, UV-B and temperature is remarkable, and this ability could be crucial in the context of future climate change. The productivity of these autotrophic microorganisms strongly influences secondary production that ties their fate to that of all other life in the Southern Ocean.</p>


MAUSAM ◽  
2021 ◽  
Vol 62 (4) ◽  
pp. 633-640
Author(s):  
SANDIP R.OZA ◽  
R.K.K. SINGH ◽  
ABHINAV SRIVASTAVA ◽  
MIHIR K.DASH ◽  
I.M.L. DAS ◽  
...  

The growth and decay of sea ice are complex processes and have important feedback onto the oceanic and atmospheric circulation. In the Antarctic, sea ice variability significantly affects the primary productivity in the Southern Ocean and thereby negatively influences the performance and survival of species in polar ecosystem. In present days, the awareness on the sea ice variability in the Antarctic is not as matured as it is for the Arctic region. The present paper focuses on the inter-annual trends (1999-2009) observed in the monthly fractional sea ice cover in the Antarctic at 1 × 1 degree level, for the November and February months, derived from QuikSCAT scatterometer data. OSCAT scatterometer data from India’s Oceansat-2 satellite were used to asses the sea ice extent (SIE) observed in the month of November 2009 and February 2010 and its deviation from climatic maximum (1979-2002) sea ice extent (CMSIE). Large differences were observed between SIE and CMSIE, however, trend results show that it is due to the high inter-annual variability in sea ice cover. Spatial distribution of trends show the existence of positive and negative trends in the parts of Western Pacific Ocean, Ross Sea, Amundsen and Bellingshausen Seas (ABS), Weddell Sea and Indian ocean sector of southern ocean. Sea ice trends are compared with long-term SST trends (1982-2009) observed in the austral summer month of February. Large-scale cooling trend observed around Ross Sea and warming trend in ABS sector are the distinct outcome of the study.


2020 ◽  
Vol 648 ◽  
pp. 95-110 ◽  
Author(s):  
LC Lund-Hansen ◽  
I Hawes ◽  
K Hancke ◽  
N Salmansen ◽  
JR Nielsen ◽  
...  

Ice algae are key contributors to primary production and carbon fixation in the Arctic, and light availability is assumed to limit their growth and productivity. We investigated photo-physiological responses in sea ice algae to increased irradiance during a spring bloom in West Greenland. During a 14 d field experiment, light transmittance through sea ice was manipulated to provide 3 under-ice irradiance regimes: low (0.04), medium (0.08), and high (0.16) transmittances. Chlorophyll a decreased with elevated light availability relative to the control. Maximum dark-adapted photosynthetic efficiency (ΦPSII_max) showed an initially healthy and productive ice algae community (ΦPSII_max > 0.6), with ΦPSII_max decreasing markedly under high-light treatments. This was accompanied by a decrease in the light utilization coefficient (α) and photosynthetic capacity (maximum relative electron transfer rate), and a decrease in the ratio of mono- to polyunsaturated fatty acids. This was partly explained by a corresponding increase of photoprotective pigments (diadinoxanthin and diatoxanthin), and a development of mycosporine-like amino acids as identified from a distinctive spectral absorption peak at 360 nm. After 14 d, in situ fluorescence imaging revealed significant differences in ΦPSII_max between treatments of dark-adapted cells (i.e. those sampled before sunrise and after sunset), during diel cycles, with clear chronic photoinhibition in high and medium treatments. Data demonstrate the high sensitivity of spring-blooming Arctic sea ice algae to elevated irradiance caused by loss of snow cover. The predicted loss of snow cover on landfast ice will negatively impact ice algae, their potential primary production, and nutritional quality for higher trophic levels.


1998 ◽  
Vol 27 ◽  
pp. 571-575 ◽  
Author(s):  
J. C. King ◽  
S. A. Harangozo

Temperature records from slations on the west roast of the Antarctic Peninsula show a very high level of interannual variability and, over the last 50 years, larger warming trends than are seen elsewhere in Antarctica. in this paper we investigate the role of atmospheric circulation variability and sea-ice extent variations in driving these changes. Owing to a lack of independent data, the reliability of Antarctic atmospheric analyses produced in the 1950s and 1960s cannot be readily established, but examination of the available data suggests that there has been an increase in the northerly component of the circulation over the Peninsula since the late 1950s. Few observations of sea-ice extent are available prior to 1973, but the limited data available indicate that the ice edge to the west of the Peninsula lay to the north of recently observed extremes during the very cold conditions prevailing in the late 1950s. The ultimate cause of the atmospheric-circulation changes remains to be determined and may lie outside the Antarctic region.


2021 ◽  
Author(s):  
◽  
Anna Borisovna Albot

<p>Grain size analysis of the terrigenous fraction of a laminated diatom ooze dating back to 11.4 kyr recovered offshore Adélie Land, East Antarctic margin was used to examine variations in sediment transport, depositional environments and Holocene climate variability at the location. Interpretations were assisted by additional proxies of primary productivity (δ¹³CFA, BSi%), glacial meltwater input (δDFA) and subsurface temperature (TEXL₈₆). Three lithologic intervals with distinct grain size distributions were identified. At ~11.4 ka the diatom ooze has a clear glacimarine influence which gradually decreases until ~8.2 ka. During this time interval, coincident with the early Holocene warm period, sediment is inferred to have been delivered by glacial meltwater plumes and ice-bergs in a calving bay environment. It is suggested that the glaciers in Adélie Land had retreated to their present day grounding lines by 8.2 ka, and from then on sediment was delivered to the site primarily via the Antarctic Coastal and Slope Front Currents, largely through a suspended sediment load and erosion of the surrounding banks. Enhanced biogenic mass accumulation rates and primary production at 8.2 ka suggest onset of warmer climatic conditions, coincident with the mid-Holocene Climatic Optimum.  At ~4.5 ka, grain size distributions show a rapid increase in mud content coincident with a transient pulse of glacial meltwater and a sudden decrease in biogenic and terrigenous mass accumulation rates. The increased mud content is inferred to have been deposited under a reduced flow regime of the Antarctic Coastal and Slope Front Currents during the Neoglacial period that followed the final stages of deglaciation in the Ross Sea. It is hypothesised here that cessation of glacial retreat in the Ross Sea and the development of the modern day Ross Sea polynya resulted in enhanced Antarctic Surface Water production which led to increased sea ice growth in the Adélie Land region. The presence of sea ice led to reduced primary production and a decrease in the maximum current strength acting to advect coarser-sized terrigenous sediment to the core site during this time.  Sedimentation rates appear to have a strong correlation with the El Niño Southern Oscillation (ENSO) over the last 8.2 kyr, and are inferred to be related to changing sea ice extent and zonal wind strength. Light laminae counts (biogenic bloom events) appear to decrease in frequency during time intervals dominated by El Niño events. Spectral analysis of the greyscale values of core photographs reveals peaks in the 2-7 year band, known ENSO periods, which increase in frequency in the mid-and-late Holocene. Spectral analyses of the sand percent and natural gamma ray (NGR, a measure of clay mineral input) content of the core reveal peaks in the ~40-60, 200-300, 600, 1200-1600 and 2200-2400 year bands. The most significant of these cycles in the NGR data is in 40-60 year band may be related to internal mass balance dynamics of the Mertz Glacier or to the expansion and contraction of the Antarctic circumpolar vortex. Cycles in the 200-300 and 2200-2400 year bands are related to known periods of solar variability, which have previously been found to regulate primary productivity in Antarctic coastal waters. Cycles in the 590-625 and 1200-1600 year bands have a strong signal through the entire record and are common features of Holocene climatic records, however the origin of these cycles is still under debate between solar forcing and an independent mode of internal ocean oscillation.</p>


2012 ◽  
Vol 6 (2) ◽  
pp. 931-956 ◽  
Author(s):  
C. L. Parkinson ◽  
D. J. Cavalieri

Abstract. In sharp contrast to the decreasing sea ice coverage of the Arctic, in the Antarctic the sea ice cover has, on average, expanded since the late 1970s. More specifically, satellite passive-microwave data for the period November 1978–December 2010 reveal an overall positive trend in ice extents of 17 100 ± 2300 km2 yr−1. Much of the increase, at 13 700 ± 1500 km2 yr−1, has occurred in the region of the Ross Sea, with lesser contributions from the Weddell Sea and Indian Ocean. One region, that of the Bellingshausen/Amundsen Seas, has, like the Arctic, instead experienced significant sea ice decreases, with an overall ice extent trend of −8200 ± 1200 km2 yr−1. When examined through the annual cycle over the 32-yr period 1979–2010, the Southern Hemisphere sea ice cover as a whole experienced positive ice extent trends in every month, ranging in magnitude from a low of 9100 ± 6300 km2 yr−1 in February to a high of 24 700 ± 10 000 km2 yr−1 in May. The Ross Sea and Indian Ocean also had positive trends in each month, while the Bellingshausen/Amundsen Seas had negative trends in each month, and the Weddell Sea and Western Pacific Ocean had a mixture of positive and negative trends. Comparing ice-area results to ice-extent results, in each case the ice-area trend has the same sign as the ice-extent trend, but differences in the magnitudes of the two trends identify regions with overall increasing ice concentrations and others with overall decreasing ice concentrations. The strong pattern of decreasing ice coverage in the Bellingshausen/Amundsen Seas region and increasing ice coverage in the Ross Sea region is suggestive of changes in atmospheric circulation. This is a key topic for future research.


2021 ◽  
pp. 14-38
Author(s):  
Klaus Dodds ◽  
Jamie Woodward

‘The physical environment’ describes the Arctic as the polar opposite of the Antarctic continent as it is an ocean semi-enclosed by land. The rocks of the Arctic record key periods in Earth history. The Arctic environment has had an interesting path of evolution. Why is the Arctic cold today? The polar latitudes actually receive less solar energy than the rest of the Earth's surface. What is the key role of sea ice in the Arctic climate system? How does sea ice decline impact upon the Arctic Ocean? The Greenland ice sheet, high latitude glaciers, and the importance of permafrost in the far north are also important topics related to the physical environment.


PLoS ONE ◽  
2020 ◽  
Vol 15 (4) ◽  
pp. e0231178 ◽  
Author(s):  
Chelsea Wegner Koch ◽  
Lee W. Cooper ◽  
Catherine Lalande ◽  
Thomas A. Brown ◽  
Karen E. Frey ◽  
...  

2021 ◽  
pp. 1-27
Author(s):  
Fernando Luis Hillebrand ◽  
Ulisses Franz Bremer ◽  
Marcos Wellausen Dias de Freitas ◽  
Juliana Costi ◽  
Cláudio Wilson Mendes Júnior ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document