Synthesis and Thermal Treatment of Lithium- and Magnesium-Containing Geopolymers

2021 ◽  
Author(s):  
◽  
Sean O'Connor

<p>Geopolymers are a class of cementitious aluminosilicate materials that are receiving an increasing amount of attention due to their potential applications in toxic waste remediation and as construction materials. They are composed of a network of crosslinked silicate and aluminate tetrahedra with charge-balancing alkali cations and are therefore similar in composition to alkali aluminosilicate zeolites. They are, however, x-ray amorphous.¹⁻⁴ They are formed by the dissolution of a solid aluminosilicate in a solution of alkali hydroxide or alkali silicate to form aluminosilicate ions which subsequently polymerise.  The effects of adding magnesium to metakaolin geopolymer systems was examined. Magnesium was added as soluble magnesium salts and as magnesium oxide and hydroxide. When added as a soluble salt, an amorphous magnesium (alumino)silicate with a lower degree of silicate polymerisation than a geopolymer is formed. When added as the oxide or hydroxide, hydrotalcite is formed. In both cases, the product is produced alongside a separate geopolymer phase. A magnesiumcontaining geopolymer phase was not found in either. When heated to 1200°C, geopolymers with magnesium oxide added bloated to form lightweight foams.  Lithium analogues of conventional metakaolin geopolymer systems with a range of lithium, aluminium, silicon and water contents were examined. Systems with molar ratios similar to those of commonly studied sodium and potassium metakaolin geopolymers produce self-pelletised lithium zeolites. The zeolite formed was Li-EDI, the lithium analogue of zeolite F. This is the first reported synthesis directly from metakaolin. True lithium geopolymers are found not to form in the systems examined. The zeolite bodies react to form β-eucryptite and β-spodumene at temperatures from 800 – 1350°C.  The use of aluminium hydroxide and amorphoud silica rather than aluminosilicates as raw materials for the formation of potassium geopolymers was found to produce geopolymers with embedded grains of unreacted silica and aluminium hydroxide.</p>

2021 ◽  
Author(s):  
◽  
Sean O'Connor

<p>Geopolymers are a class of cementitious aluminosilicate materials that are receiving an increasing amount of attention due to their potential applications in toxic waste remediation and as construction materials. They are composed of a network of crosslinked silicate and aluminate tetrahedra with charge-balancing alkali cations and are therefore similar in composition to alkali aluminosilicate zeolites. They are, however, x-ray amorphous.¹⁻⁴ They are formed by the dissolution of a solid aluminosilicate in a solution of alkali hydroxide or alkali silicate to form aluminosilicate ions which subsequently polymerise.  The effects of adding magnesium to metakaolin geopolymer systems was examined. Magnesium was added as soluble magnesium salts and as magnesium oxide and hydroxide. When added as a soluble salt, an amorphous magnesium (alumino)silicate with a lower degree of silicate polymerisation than a geopolymer is formed. When added as the oxide or hydroxide, hydrotalcite is formed. In both cases, the product is produced alongside a separate geopolymer phase. A magnesiumcontaining geopolymer phase was not found in either. When heated to 1200°C, geopolymers with magnesium oxide added bloated to form lightweight foams.  Lithium analogues of conventional metakaolin geopolymer systems with a range of lithium, aluminium, silicon and water contents were examined. Systems with molar ratios similar to those of commonly studied sodium and potassium metakaolin geopolymers produce self-pelletised lithium zeolites. The zeolite formed was Li-EDI, the lithium analogue of zeolite F. This is the first reported synthesis directly from metakaolin. True lithium geopolymers are found not to form in the systems examined. The zeolite bodies react to form β-eucryptite and β-spodumene at temperatures from 800 – 1350°C.  The use of aluminium hydroxide and amorphoud silica rather than aluminosilicates as raw materials for the formation of potassium geopolymers was found to produce geopolymers with embedded grains of unreacted silica and aluminium hydroxide.</p>


2019 ◽  
Vol 73 (4) ◽  
pp. 265-274
Author(s):  
Slavica Mihajlovic ◽  
Zivko Sekulic ◽  
Jovica Stojanovic ◽  
Vladan Kasic ◽  
Iroslav Sokic ◽  
...  

Quality of raw materials, including quartz sand and quartzite, varies from one deposit to another. Furthermore, the material quality determines in which industrial branches it can be used after certain preparation processes. Potential applications of quartz raw materials are: in the construction and refractory industry, ceramics and glass industry, then in metallurgy, foundry and also in production of water treatment filters. Geological investigations of the central Serbia region, in the Rekovac municipality, resulted in identification of occurrence of quartz sand ("Ursula") and quartzite ("Velika Krusevica"). Preliminary laboratory tests and characterization of the quartz sand size fraction -0.63+0.1 mm confirmed the possibility of applying this size fraction in the construction materials industry, while the quartzite can be used in refractory, glass and metallurgy industries. After determining the geological reserve of quartz sand "Ursula" and quartzite "Velika Krusevica", detailed investigations are required. Quality conditions from the aspect of chemical composition and physical properties of quartz sand and quartzite are mostly clearly defined by a special standard for this purpose. On the other hand, there are also application areas where standards does not exist, but users define their quality conditions. This example is with the application of quartz sand in the production of water glass. Chemical composition as well is not always the determining factor for the application of quartz raw material. For example, for quartz sand used for sandblasting, grain form is essential. From the economic analysis point of view, the prices of quartz raw materials vary depending on their chemical and physical properties. After all, what needs to be pointed out is the fact that these raw materials are very widespread in nature and that their exploitation is quite simple. After the raw material is excavated, it is stored and further sieved, washed, dried and processed according to customer requirements. All of these processes are cheaper than preparing, for example, limestone, and significaly cheaper than preparation of metal ores.


Author(s):  
Ashaq Hussain Sofi ◽  
Shabir Ahmad Akhoon ◽  
Jaffar Farooq Mir ◽  
Mehraj Ud Din Rather

Bacterial contamination is an unusual menace for human well-being. Nanotechnology proposes diverse techniques to nurture new inorganic antibacterial agents. Nano-inorganic metal oxides possess an auspicious potential to diminish bacterial effluence. Magnesium oxide (MgO) is a significant inorganic oxide and has been widely employed in numerous arenas such as catalysis, ceramics, toxic waste remediation, antibacterial activity, and as an additive in paint and superconductor products by virtue of its distinctive properties. Numerous studies have shown that magnesium oxide nanostructures possess remarkable antibacterial activity. Therefore, in this direction, few synthesis methods such as hydrothermal method, sol-gel method, etc., antibacterial activity, and antibacterial mechanisms of magnesium oxide nanostructures have been incorporated in this chapter.


2013 ◽  
Vol 760 ◽  
pp. 69-71 ◽  
Author(s):  
M.A. Shah

The unique properties of nanomaterials have motivated the researchers to develop the simpler and inexpensive techniques to produce nanostructures of technologically important materials. Several oxide nanostructures are produced to have tremendous applications in the future and among them, magnesium oxide (MgO) is an exceptionally important material for use in catalysis, toxic waste remediation, as an additive in refractory, paint and superconducting products Fang et a. (2006).


2020 ◽  
Vol 4 (1) ◽  
pp. 41-48
Author(s):  
Teodoro Astorga Amatosa ◽  
Michael E. Loretero

Bamboo is a lightweight and high-strength raw materials that encouraged researchers to investigate and explore, especially in the field of biocomposite and declared as one of the green-technology on the environment as fully accountable as eco-products. This research was to assess the technical feasibility of making single-layer experimental Medium-Density Particleboard panels from the bamboo waste of a three-year-old (Dendrocalamus asper). Waste materials were performed to produce composite materials using epoxy resin (C21H25C105) from a natural treatment by soaking with an average of pH 7.6 level of sea-water. Three different types of MDP produced, i.e., bamboo waste strip MDP (SMDP), bamboo waste chips MDP (CMDP) and bamboo waste mixed strip-chips MDP (MMDP) by following the same process. The experimental panels tested for their physical-mechanical properties according to the procedures defined by ASTM D1037-12. Conclusively, even the present study shows properties of MDP with higher and comparable to other composite materials; further research must be given better attention as potential substitute to be used as hardwood materials, especially in the production, design, and construction usage.


2021 ◽  
Vol 11 (8) ◽  
pp. 3545
Author(s):  
Fernanda Andreola ◽  
Isabella Lancellotti ◽  
Paolo Pozzi ◽  
Luisa Barbieri

This research reports results of eco-compatible building material obtained without natural raw materials. A mixture of sludge from a ceramic wastewater treatment plant and glass cullet from the urban collection was used to obtain high sintered products suitable to be used as covering floor/wall tiles in buildings. The fired samples were tested by water absorption, linear shrinkage, apparent density, and mechanical and chemical properties. Satisfactory results were achieved from densification properties and SEM/XRD analyses showed a compact polycrystalline microstructure with albite and wollastonite embedded in the glassy phase, similar to other commercial glass-ceramics. Besides, the products were obtained with a reduction of 200 °C with respect to the firing temperatures of commercial ones. Additionally, the realized materials were undergone to leaching test following Italian regulation to evaluate the mobility of hazardous ions present into the sludge. The data obtained verified that after thermal treatment the heavy metals were immobilized into the ceramic matrix without further environmental impact for the product use. The results of the research confirm that this valorization of matter using only residues produces glass ceramics high sintered suitable to be used as tile with technological properties similar or higher than commercial ones.


2020 ◽  
Vol 32 (4) ◽  
pp. 733-738 ◽  
Author(s):  
R. Manurung ◽  
Taslim ◽  
A.G.A. Siregar

Deep eutectic solvents (DESs) have numerous potential applications as cosolvents. In this study, use of DES as organic solvents for enzymatic biodiesel production from degumming palm oil (DPO) was investigated. Deep eutectic solvent was synthesized using choline chloride salt (ChCl) compounds with glycerol and 1,2-propanediol. Deep eutectic solvent was characterized by viscosity, density, pH and freezing values, which were tested for effectiveness by enzymatic reactions for the production of palm biodiesel with raw materials DPO. Deep eutectic solvent of ChCl and glycerol produced the highest biodiesel yield (98.98%); weight of DES was only 0.5 % of that of the oil. In addition, the use of DES maintained the activity and stability of novozym enzymes, which was assessed as the yield until the 6th usage, which was 95.07 % biodiesel yield compared with the yield without using DES. Hence, using DES, glycerol in enzymatic biodiesel production had high potentiality as an organic solvent for palm oil biodiesel production


Clay Minerals ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 453-465 ◽  
Author(s):  
I. Gonzalez ◽  
E. Galan ◽  
A. Miras ◽  
P. Aparicio

AbstractAn attempt has been made to assess new potential applications for the Bailén clays, traditionally used for manufacturing bricks, based on mineralogical, chemical, particle size, plasticity and firing results. Raw materials and mixtures used by the local factory were selected and tested with the addition of some diatomite, feldspar or kaolin. Based on their properties, clay materials from Bailén might be suitable for making porous red wall tiles, clinker, vitrified red floor tiles and porous light-coloured wall tiles by pressing; the first could be manufactured from the raw materials and mixtures currently used by the local manufactures. On the other hand, stoneware shaped by extrusion, such as perforated bricks, facing bricks and roofing tiles, can be also manufactured from the mixtures used at the factory if they contain 20-25% carbonate and small amounts of iron oxides; lightweight bricks require black and yellow clays with diatomite.


2014 ◽  
Vol 1000 ◽  
pp. 12-15
Author(s):  
Jiří Švec ◽  
Tomáš Opravil ◽  
Jiří Másilko

Reusing and recycling of secondary raw materials from high-volume industrial productions (especially form construction materials and binders fabrications) is very important way of conserving environment and it is also interesting from the economical point of view. The production of common hydraulic binders, especially Portland cement, burdens the environment with considerable amount of combustion gases and consumes energy in massive scale. Alternative (low – energy) binder can be used as Portland cement substitution in applications with lower mechanical properties requirements. Mined limestone wash sediments contain large amount of clay components, but there is also indispensable share of fine calcite. This composition makes these sediments a promising material for the preparation of hydraulic binders as Roman cement or hydraulic lime.


2020 ◽  
Author(s):  
Carlos Galhano ◽  
Pedro Lamas ◽  
Diogo Seixas

The massive growth of the ceramic industry and the consequent demand for construction materials worldwide has motivated the search for alternative solutions aimed at reducing the use of mineral / natural resources as the main source of raw materials. One of the strategies frequently adopted by the scientific community is the reuse of industrial waste. It is beneficial not only to reduce the overexploitation of mineral resources but also to reduce the environmental, economic and social impacts resulting from their incorrect disposal/treatment and consequent deposition on land unsuitable or that purpose. Duetoconsiderationssuchasphysico-mechanical characteristics and the high production rate, two different types of industrial waste were selected for this work, ashes resulting from the burning of coal in thermoelectric power plant, commonly known as bottom ash (B), and the Marble Powder (MP). It was intended to test the technological feasibility of the manufacture of ceramic materials produced from clay mixtures containing these two residues. For this purpose, the fine fraction(<63μm)obtained from the sieving of the marbleresidue(MR)and slag(Bf)was used,aswellasacoarsergrainslagfractionrangingfrom63-125μm(Bg). The resulting test samples were subjected to a firing of 950 °C under an oxidizing atmosphere, following a primary drying process. Faced with the standard values, the new ceramic materials obtained from MP have seen their mechanical and porous characteristics decrease and increase, respectively. Atthesametime,althoughtheadditionofBinno way influenced the mechanical characteristics,a significant improvement the porous characteristic was observed. The incorporation of these residues produced a color very close to the original sample material. Keywords: industrial waste, ceramic, construction materials, bottom ash, Marble Powder


Sign in / Sign up

Export Citation Format

Share Document