scholarly journals The development of animal models for autism: A gene-environment approach

2021 ◽  
Author(s):  
◽  
Peter Ranger

<p>Autism Spectrum Disorder (ASD) is a pervasive neurodevelopmental disorder characterised by social, communicative, and behavioural deficits. Despite decades of research in this field, effective pharmacological treatments for ASD are still lacking and better animal models for this disorder are urgently needed. Although it is now well understood that both genetic and environmental influences play a role in the aetiology of ASD, most existing animal models for this disorder only take into account one of these aetiological contributors and have largely ignored investigating an interaction. The main aim of this thesis was to develop a novel animal model for ASD that demonstrated higher construct validity than traditional models by using a gene-environment approach. To this aim, two previously established environmental risk factor-based models for ASD were each combined with a genetic rat model that mimicked a genotype associated with ASD. Specifically, a maternal immune activation model (modelled via prenatal administration of lipopolysaccharide) and a prenatal exposure to valproate model (modelled via prenatal administration of valproate) were both combined with a serotonin transporter (SERT) knockout rat model. Next, experimental rats were investigated in a variety of paradigms designed to detect behavioural, biochemical, and immunological outcomes related to ASD. This thesis tested the hypothesis that rats with a genetically compromised SERT function would be more vulnerable to the impacts of the two environmental risk factors. Collectively, the data from this thesis show that rats with a genetically compromised SERT function are not more vulnerable to the impacts of a maternal immune activation or prenatal exposure to VPA. In fact, at least with regards to prenatal exposure to valproate, rats with a compromised SERT function actually appeared more resilient to ASD-like outcomes.</p>

2021 ◽  
Author(s):  
◽  
Peter Ranger

<p>Autism Spectrum Disorder (ASD) is a pervasive neurodevelopmental disorder characterised by social, communicative, and behavioural deficits. Despite decades of research in this field, effective pharmacological treatments for ASD are still lacking and better animal models for this disorder are urgently needed. Although it is now well understood that both genetic and environmental influences play a role in the aetiology of ASD, most existing animal models for this disorder only take into account one of these aetiological contributors and have largely ignored investigating an interaction. The main aim of this thesis was to develop a novel animal model for ASD that demonstrated higher construct validity than traditional models by using a gene-environment approach. To this aim, two previously established environmental risk factor-based models for ASD were each combined with a genetic rat model that mimicked a genotype associated with ASD. Specifically, a maternal immune activation model (modelled via prenatal administration of lipopolysaccharide) and a prenatal exposure to valproate model (modelled via prenatal administration of valproate) were both combined with a serotonin transporter (SERT) knockout rat model. Next, experimental rats were investigated in a variety of paradigms designed to detect behavioural, biochemical, and immunological outcomes related to ASD. This thesis tested the hypothesis that rats with a genetically compromised SERT function would be more vulnerable to the impacts of the two environmental risk factors. Collectively, the data from this thesis show that rats with a genetically compromised SERT function are not more vulnerable to the impacts of a maternal immune activation or prenatal exposure to VPA. In fact, at least with regards to prenatal exposure to valproate, rats with a compromised SERT function actually appeared more resilient to ASD-like outcomes.</p>


2021 ◽  
Vol 12 ◽  
Author(s):  
Zhaoyao Qi ◽  
Mengke Lyu ◽  
Liping Yang ◽  
Haiyan Yuan ◽  
Yun Cao ◽  
...  

Background: Autism spectrum disorders (ASD) is a complex neurodevelopmental disorder that lacks an ideal animal model to recapitulate the disease state of ASD. Previous studies have reported that transplanting gut microbiota of ASD patients into pregnant mice is sufficient to promote the changes of autism-like behavior in offspring. This study aims to explore whether fecal microbiota transplantation (FMT) can be used as a new method to establish the ASD animal model.Methods: We transplanted the fecal sample extract of ASD children into pregnant rats (rFMT) repeatedly to establish an ASD rat model (oFMT) and compare it with the classical valproic acid (VPA) model (oVPA).Results: First, we reveal that oFMT shows hypoevolutism and typical behavioral characteristics of ASD, consistent with the previous study. Second, the gut microbiota of oFMT mainly consists of Firmicutes and Bacteroidetes, recapitulating the abnormal gut microbiota of ASD. In oFMT, the abundance of Lactobacillus and Collinsella increased (Lactobacillus: oFMT 60.16%, oVPA 64.13%, oCON 40.11%; Collinsella: oFMT 3.73%, oVPA 1.39%, oCON 1.28%), compared with oVPA, gut microbiota also showed high consistency. Third, the expression of 5-hydroxytryptamine (5-HT) in oFMT serum increased, γ-aminobutyric acid (GABA) and norepinephrine (NE) in oFMT serum decreased. Fourth, the gut microbiota of oFMT also has some ASD characteristic gut microbiota not found in oVPA. Fifth, pregnant rat with VPA showed significant immune activation, while those with FMT showed relatively minor immune activation.Limitations: Although the mechanism of establishing FMT autism rat model (oFMT) has not clearly defined, the data show that the model has high structural validity, and FMT model is likely to be a new and reliable potential animal model of ASD, and will have potential value in studying gut microbiota of ASD.Conclusions: The FMT autism rat model has high structural validity, and the FMT model is likely to be a new and reliable potential animal model of ASD.


2021 ◽  
Vol 14 ◽  
Author(s):  
Madeline L. Arnold ◽  
Kaoru Saijo

Interestingly, more males are diagnosed with autism spectrum disorder (ASD) than females, yet the mechanism behind this difference is unclear. Genes on the sex chromosomes and differential regulation by sex steroid hormones and their receptors are both candidate mechanisms to explain this sex-dependent phenotype. Nuclear receptors (NRs) are a large family of transcription factors, including sex hormone receptors, that mediate ligand-dependent transcription and may play key roles in sex-specific regulation of immunity and brain development. Infection during pregnancy is known to increase the probability of developing ASD in humans, and a mouse model of maternal immune activation (MIA), which is induced by injecting innate immune stimulants into pregnant wild-type mice, is commonly used to study ASD. Since this model successfully recaptures the behavioral phenotypes and male bias observed in ASD, we will discuss the potential role of sex steroid hormones and their receptors, especially focusing on estrogen receptor (ER)β, in MIA and how this signaling may modulate transcription and subsequent inflammation in myeloid-lineage cells to contribute to the etiology of this neurodevelopmental disorder.


2021 ◽  
Vol 12 ◽  
Author(s):  
Zahra Choudhury ◽  
Belinda Lennox

Schizophrenia is a complex neurodevelopmental disorder affecting around 19. 8 million people worldwide. The etiology of the disorder is due to many interacting genetic and environmental factors, with no one element causing the full spectrum of disease symptoms. Amongst these factors, maternal immune activation (MIA) acting during specific gestational timings has been implicated in increasing schizophrenia risk in offspring. Epidemiological studies have provided the rationale for this link with prevalence of maternal infection correlating to increased risk, but these studies have been unable to prove causality due to lack of control of confounding factors like genetic susceptibility and inability to identify specific cellular and molecular mechanisms. Animal models have proved significantly more useful in establishing the extent to which MIA can predispose an individual to schizophrenia, displaying how maternal infection alone can directly result in behavioral abnormalities in rodent offspring. Alongside information from genome wide association studies (GWAS), animal models have been able to identify the role of complement proteins, particularly C4, and display how alterations in this system can cause development of schizophrenia-associated neuropathology and behavior. This article will review the current literature in order to assess whether schizophrenia can, therefore, be viewed as an immune priming disorder.


Toxics ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 97
Author(s):  
Tristan Furnary ◽  
Rolando Garcia-Milian ◽  
Zeyan Liew ◽  
Shannon Whirledge ◽  
Vasilis Vasiliou

Recent epidemiological studies suggest that prenatal exposure to acetaminophen (APAP) is associated with increased risk of Autism Spectrum Disorder (ASD), a neurodevelopmental disorder affecting 1 in 59 children in the US. Maternal and prenatal exposure to pesticides from food and environmental sources have also been implicated to affect fetal neurodevelopment. However, the underlying mechanisms for ASD are so far unknown, likely with complex and multifactorial etiology. The aim of this study was to explore the potential effects of APAP and pesticide exposure on development with regards to the etiology of ASD by highlighting common genes and biological pathways. Genes associated with APAP, pesticides, and ASD through human research were retrieved from molecular and biomedical literature databases. The interaction network of overlapping genetic associations was subjected to network topology analysis and functional annotation of the resulting clusters. These genes were over-represented in pathways and biological processes (FDR p < 0.05) related to apoptosis, metabolism of reactive oxygen species (ROS), and carbohydrate metabolism. Since these three biological processes are frequently implicated in ASD, our findings support the hypothesis that cell death processes and specific metabolic pathways, both of which appear to be targeted by APAP and pesticide exposure, may be involved in the etiology of ASD. This novel exposures-gene-disease database mining might inspire future work on understanding the biological underpinnings of various ASD risk factors.


2021 ◽  
pp. 026988112110297
Author(s):  
Wayne Meighan ◽  
Thomas W Elston ◽  
David Bilkey ◽  
Ryan D Ward

Background: Animal models of psychiatric diseases suffer from a lack of reliable methods for accurate assessment of subjective internal states in nonhumans. This gap makes translation of results from animal models to patients particularly challenging. Aims/methods: Here, we used the drug-discrimination paradigm to allow rats that model a risk factor for schizophrenia (maternal immune activation, MIA) to report on the subjective internal state produced by a subanesthetic dose of the N-methyl-D-aspartate (NMDA) receptor antagonist ketamine. Results/outcomes: The MIA rats’ discrimination of ketamine was impaired relative to controls, both in the total number of rats that acquired and the asymptotic level of discrimination accuracy. This deficit was not due to a general inability to learn to discriminate an internal drug cue or internal state generally, as MIA rats were unimpaired in the learning and acquisition of a morphine drug discrimination and were as sensitive to the internal state of satiety as controls. Furthermore, the deficit was not due to a decreased sensitivity to the physiological effects of ketamine, as MIA rats showed increased ketamine-induced locomotor activity. Finally, impaired discrimination of ketamine was only seen at subanesthetic doses which functionally correspond to psychotomimetic doses in humans. Conclusion: These data link changes in NMDA responses to the MIA model. Furthermore, they confirm the utility of the drug-discrimination paradigm for future inquiries into the subjective internal state produced in models of schizophrenia and other developmental diseases.


2021 ◽  
Vol 11 (3) ◽  
pp. 344
Author(s):  
Kinga Gzielo ◽  
Agnieszka Potasiewicz ◽  
Ewa Litwa ◽  
Diana Piotrowska ◽  
Piotr Popik ◽  
...  

Prenatal maternal infection is associated with an increased risk of various neurodevelopmental disorders, including autism spectrum disorders (ASD). Maternal immune activation (MIA) can be experimentally induced by prenatal administration of polyinosinic:polycytidylic acid (poly I:C), a synthetic viral-like double-stranded RNA. Although this MIA model is adopted in many studies, social and communicative deficits, included in the first diagnostic criterion of ASD, are poorly described in the offspring of poly(I:C)-exposed dams. This study aimed to characterize the impact of prenatal poly(I:C) exposure on socio-communicative behaviors in adolescent rats. For this purpose, social play behavior was assessed in both males and females. We also analyzed quantitative and structural changes in ultrasonic vocalizations (USVs) emitted by rats during the play test. Deficits of social play behaviors were evident only in male rats. Males also emitted a significantly decreased number of USVs during social encounters. Prenatal poly(I:C) exposure also affected acoustic call parameters, as reflected by the increased peak frequencies. Additionally, repetitive behaviors were demonstrated in autistic-like animals regardless of sex. This study demonstrates that prenatal poly(I:C) exposure impairs socio-communicative functioning in adolescent rats. USVs may be a useful tool for identifying early autistic-like abnormalities.


2018 ◽  
Vol 25 (5) ◽  
pp. 549-561 ◽  
Author(s):  
Marta De Felice ◽  
Miriam Melis ◽  
Sonia Aroni ◽  
Anna Lisa Muntoni ◽  
Silvia Fanni ◽  
...  

2022 ◽  
Author(s):  
Tom Johnson ◽  
Defne Saatci ◽  
Lahiru Handunnetthi

Susceptibility to schizophrenia is mediated by genetic and environmental risk factors. Infection driven maternal immune activation (MIA) during pregnancy is a key environmental risk factor. However, little is known about how MIA during pregnancy could contribute to adult-onset schizophrenia. In this study, we investigated if maternal immune activation induces changes in methylation of genes linked to schizophrenia. We found that differentially expressed genes in schizophrenia brain were significantly enriched among MIA induced differentially methylated genes in the foetal brain in a cell-type-specific manner. Upregulated genes in layer V pyramidal neurons were enriched among hypomethylated genes at gestational day 9 (fold change = 1.57 , FDR = 0.049) and gestational day 17 (fold change = 1.97 , FDR = 0.0006). We also found that downregulated genes in GABAergic Rosehip interneurons were enriched among hypermethylated genes at gestational day 17 (fold change = 1.62, FDR= 0.03). Collectively, our results highlight a connection between MIA driven methylation changes during gestation and schizophrenia gene expression signatures in the adult brain. These findings carry important implications for early preventative strategies in schizophrenia.


Sign in / Sign up

Export Citation Format

Share Document