scholarly journals Acoustic Room Impulse Response Shaping

2021 ◽  
Author(s):  
◽  
Lakshmi Krishnan

<p>Impulse response shaping is a technique for modifying the characteristics of a linear channel to achieve desirable characteristics. The technique is well-known in the field of wireless communication. Acoustic impulse response shaping is used to reduce the effects of reverberation on audio signals propagating inside a room and is thus used for listening room compensation. This thesis addresses innovative approaches for acoustic impulse response shaping.  Many techniques have been proposed in the literature for canceling or reducing the effect of reverberation on the audio signal. Impulse response inversion attempts to completely cancel the effect of reverberations whereas impulse response shortening (or shaping) only partly equalizes the room impulse responses. Shortening has less stringent constraints than inversion and this can result in more robust solutions and thus more practically realizable systems.  Acoustic impulse response shaping works on measured room impulse responses and designs pre-filters to be placed before the loudspeakers so that the reverberation is reduced at the listening positions. When sampled, the room responses typically contain thousands or tens of thousands (N ) of samples. Thus, the shaping algorithm needs to be computationally fast and memory efficient in order to implement the system in real time. The techniques presented in the literature use interior point methods or steepest descent algorithms, which are computationally slow or require memory of the order of N² . This thesis presents shaping approaches based on the Dual Augmented Lagrangian Method (DALM), known in the literature on sparse reconstruction for its super-linear convergence. The method presented here also makes use of the concept of a Forward Adjoint Oracle (FAO) to make the shaping algorithm memory efficient. Thus, the thesis presents computationally fast and memory efficient shaping algorithms that can be used for practically realizable systems.  The thesis also presents robust shaping approaches. The measured room responses may contain measurement errors or noise and can vary from time to time. These variations may be due to changes in atmospheric conditions (such as temperature or humidity) or due to change in position of objects inside a room. While design approaches over multiple microphone positions have been proposed for design of filters that are robust to change in microphone positions, a more rigorous approach is statistical, involving the inclusion of some statistical constraints into the optimization problem. The thesis presents both the approaches viz., a computationally faster version (using DALM) of the already proposed design over multiple positions and a statistically robust shaping formulation. The latter limits the probability of large errors between expected and obtained response to be less than a specified value. This ensures that the solution is robust to variations in the room response.  The shaping algorithm works in the time domain, shaping the temporal characteristics of the room response to a desired form. The frequency response of the shaped response can contain potentially undesirable peaks and troughs. This thesis therefore presents an approach for an efficient projection to improve spectral flatness of the resultant response. This algorithm can be combined with the fast and memory efficient DALM based approach to achieve joint time and frequency shaping.  Finally, the thesis also presents a computationally fast algorithm based on DALM for pressure matching used in sound field reproduction. Impulse response shaping is applied in sound field reproduction, showing that the levels of pre-reverberation induced by a temperature change can be reduced. This application is different from impulse response shaping approaches presented in the previous chapters and highlights the flexibility of the algorithm developed in this thesis and its wide range of applications.</p>

2021 ◽  
Author(s):  
◽  
Lakshmi Krishnan

<p>Impulse response shaping is a technique for modifying the characteristics of a linear channel to achieve desirable characteristics. The technique is well-known in the field of wireless communication. Acoustic impulse response shaping is used to reduce the effects of reverberation on audio signals propagating inside a room and is thus used for listening room compensation. This thesis addresses innovative approaches for acoustic impulse response shaping.  Many techniques have been proposed in the literature for canceling or reducing the effect of reverberation on the audio signal. Impulse response inversion attempts to completely cancel the effect of reverberations whereas impulse response shortening (or shaping) only partly equalizes the room impulse responses. Shortening has less stringent constraints than inversion and this can result in more robust solutions and thus more practically realizable systems.  Acoustic impulse response shaping works on measured room impulse responses and designs pre-filters to be placed before the loudspeakers so that the reverberation is reduced at the listening positions. When sampled, the room responses typically contain thousands or tens of thousands (N ) of samples. Thus, the shaping algorithm needs to be computationally fast and memory efficient in order to implement the system in real time. The techniques presented in the literature use interior point methods or steepest descent algorithms, which are computationally slow or require memory of the order of N² . This thesis presents shaping approaches based on the Dual Augmented Lagrangian Method (DALM), known in the literature on sparse reconstruction for its super-linear convergence. The method presented here also makes use of the concept of a Forward Adjoint Oracle (FAO) to make the shaping algorithm memory efficient. Thus, the thesis presents computationally fast and memory efficient shaping algorithms that can be used for practically realizable systems.  The thesis also presents robust shaping approaches. The measured room responses may contain measurement errors or noise and can vary from time to time. These variations may be due to changes in atmospheric conditions (such as temperature or humidity) or due to change in position of objects inside a room. While design approaches over multiple microphone positions have been proposed for design of filters that are robust to change in microphone positions, a more rigorous approach is statistical, involving the inclusion of some statistical constraints into the optimization problem. The thesis presents both the approaches viz., a computationally faster version (using DALM) of the already proposed design over multiple positions and a statistically robust shaping formulation. The latter limits the probability of large errors between expected and obtained response to be less than a specified value. This ensures that the solution is robust to variations in the room response.  The shaping algorithm works in the time domain, shaping the temporal characteristics of the room response to a desired form. The frequency response of the shaped response can contain potentially undesirable peaks and troughs. This thesis therefore presents an approach for an efficient projection to improve spectral flatness of the resultant response. This algorithm can be combined with the fast and memory efficient DALM based approach to achieve joint time and frequency shaping.  Finally, the thesis also presents a computationally fast algorithm based on DALM for pressure matching used in sound field reproduction. Impulse response shaping is applied in sound field reproduction, showing that the levels of pre-reverberation induced by a temperature change can be reduced. This application is different from impulse response shaping approaches presented in the previous chapters and highlights the flexibility of the algorithm developed in this thesis and its wide range of applications.</p>


2021 ◽  
Vol 11 (3) ◽  
pp. 1150
Author(s):  
Stephan Werner ◽  
Florian Klein ◽  
Annika Neidhardt ◽  
Ulrike Sloma ◽  
Christian Schneiderwind ◽  
...  

For a spatial audio reproduction in the context of augmented reality, a position-dynamic binaural synthesis system can be used to synthesize the ear signals for a moving listener. The goal is the fusion of the auditory perception of the virtual audio objects with the real listening environment. Such a system has several components, each of which help to enable a plausible auditory simulation. For each possible position of the listener in the room, a set of binaural room impulse responses (BRIRs) congruent with the expected auditory environment is required to avoid room divergence effects. Adequate and efficient approaches are methods to synthesize new BRIRs using very few measurements of the listening room. The required spatial resolution of the BRIR positions can be estimated by spatial auditory perception thresholds. Retrieving and processing the tracking data of the listener’s head-pose and position as well as convolving BRIRs with an audio signal needs to be done in real-time. This contribution presents work done by the authors including several technical components of such a system in detail. It shows how the single components are affected by psychoacoustics. Furthermore, the paper also discusses the perceptive effect by means of listening tests demonstrating the appropriateness of the approaches.


Author(s):  
Dominik Ebi ◽  
Peter Jansohn

Abstract Operating stationary gas turbines on hydrogen-rich fuels offers a pathway to significantly reduce greenhouse gas emissions in the power generation sector. A key challenge in the design of lean-premixed burners, which are flexible in terms of the amount of hydrogen in the fuel across a wide range and still adhere to the required emissions levels, is to prevent flame flashback. However, systematic investigations on flashback at gas turbine relevant conditions to support combustor development are sparse. The current work addresses the need for an improved understanding with an experimental study on boundary layer flashback in a generic swirl burner up to 7.5 bar and 300° C preheat temperature. Methane-hydrogen-air flames with 50 to 85% hydrogen by volume were investigated. High-speed imaging was applied to reveal the flame propagation pathway during flashback events. Flashback limits are reported in terms of the equivalence ratio for a given pressure, preheat temperature, bulk flow velocity and hydrogen content. The wall temperature of the center body along which the flame propagated during flashback events has been controlled by an oil heating/cooling system. This way, the effect any of the control parameters, e.g. pressure, had on the flashback limit was de-coupled from the otherwise inherently associated change in heat load on the wall and thus change in wall temperature. The results show that the preheat temperature has a weaker effect on the flashback propensity than expected. Increasing the pressure from atmospheric conditions to 2.5 bar strongly increases the flashback risk, but hardly affects the flashback limit beyond 2.5 bar.


2021 ◽  
Author(s):  
James Harding

&lt;p&gt;Earth Observation (EO) satellites are drawing considerable attention in areas of water resource management, given their potential to provide unprecedented information on the condition of aquatic ecosystems. Despite ocean colours long history; water quality parameter retrievals from shallow and inland waters remains a complex undertaking. Consistent, cross-mission retrievals of the primary optical parameters using state-of-the-art algorithms are limited by the added optical complexity of these waters. Less work has acknowledged their non- or weakly optical parameter counterparts. These can be more informative than their vivid counterparts, their potential covariance would be regionally specific. Here, we introduce a multi-input, multi-output Mixture Density Network (MDN), that largely outperforms existing algorithms when applied across different bio-optical regimes in shallow and inland water bodies. The model is trained and validated using a sizeable historical database in excess of 1,000,000 samples across 38 optical and non-optical parameters, spanning 20 years across 500 surface waters in Scotland. The single network learns to predict concurrently Chlorophyll-a, Colour, Turbidity, pH, Calcium, Total Phosphorous, Total Organic Carbon, Temperature, Dissolved Oxygen and Suspended Solids from real Landsat 7, Landsat 8, and Sentinel 2 spectra. The MDN is found to fully preserve the covariances of the optical and non-optical parameters, while known one-to-many mappings within the non-optical parameters are retained. Initial performance evaluations suggest significant improvements in Chl-a retrievals from existing state-of-the-art algorithms. MDNs characteristically provide a means of quantifying the noise variance around a prediction for a given input, now pertaining to real data under a wide range of atmospheric conditions. We find this to be informative for example in detecting outlier pixels such as clouds, and may similarly be used to guide or inform future work in academic or industrial contexts.&amp;#160;&lt;/p&gt;


Metrologia ◽  
2021 ◽  
Author(s):  
Ralf D Geckeler ◽  
Matthias Schumann ◽  
Andreas Just ◽  
Michael Krause ◽  
Antti Lassila ◽  
...  

Abstract Autocollimators are versatile devices for angle metrology used in a wide range of applications in engineering and manufacturing. A modern electronic autocollimator generally features two measuring axes and can thus fully determine the surface normal of an optical surface relative to it in space. Until recently, however, the calibration capabilities of the national metrology institutes were limited to plane angles. Although it was possible to calibrate both measuring axes independently of each other, it was not feasible to determine their crosstalk if angular deflections were present in both axes simultaneously. To expand autocollimator calibrations from plane angles to spatial angles, PTB and VTT MIKES have created dedicated calibration devices which are based on different measurement principles and accomplish the task of measurand traceability in different ways. Comparing calibrations of a transfer standard makes it possible to detect systematic measurement errors of the two devices and to evaluate the validity of their uncertainty budgets. The importance of measurand traceability via calibration for a broad spectrum of autocollimator applications is one of the motivating factors behind the creation of both devices and for this comparison of the calibration capabilities of the two national metrology institutes. The latter is the focus of the work presented here.


2021 ◽  
Vol 9 (8) ◽  
pp. 892
Author(s):  
Xian Ma ◽  
Yongxian Wang ◽  
Xiaoqian Zhu ◽  
Wei Liu ◽  
Qiang Lan ◽  
...  

The accurate calculation of the sound field is one of the most concerning issues in hydroacoustics. The one-dimensional spectral method has been used to correctly solve simplified underwater acoustic propagation models, but it is difficult to solve actual ocean acoustic fields using this model due to its application conditions and approximation error. Therefore, it is necessary to develop a direct solution method for the two-dimensional Helmholtz equation of ocean acoustic propagation without using simplified models. Here, two commonly used spectral methods, Chebyshev–Galerkin and Chebyshev–collocation, are used to correctly solve the two-dimensional Helmholtz model equation. Since Chebyshev–collocation does not require harsh boundary conditions for the equation, it is then used to solve ocean acoustic propagation. The numerical calculation results are compared with analytical solutions to verify the correctness of the method. Compared with the mature Kraken program, the Chebyshev–collocation method exhibits higher numerical calculation accuracy. Therefore, the Chebyshev–collocation method can be used to directly solve the representative two-dimensional ocean acoustic propagation equation. Because there are no model constraints, the Chebyshev–collocation method has a wide range of applications and provides results with high accuracy, which is of great significance in the calculation of realistic ocean sound fields.


2021 ◽  
Author(s):  
Brian J. Carroll ◽  
Amin R. Nehrir ◽  
Susan Kooi ◽  
James Collins ◽  
Rory A. Barton-Grimley ◽  
...  

Abstract. Airborne differential absorption lidar (DIAL) offers a uniquely capable solution to the problem of measuring water vapor (WV) with high precision, accuracy, and resolution throughout the troposphere and lower stratosphere. The High Altitude Lidar Observatory (HALO) airborne WV DIAL was recently developed at NASA Langley Research Center and was first deployed in 2019. It uses four wavelengths at 935 nm to achieve sensitivity over a wide dynamic range, and simultaneously employs 1064 nm backscatter and 532 nm high spectral resolution lidar (HSRL) measurements for aerosol and cloud profiling. A key component of the WV retrieval framework is flexibly trading resolution for precision to achieve optimal data sets for scientific objectives across scales. A technique for retrieving WV in the lowest few hundred meters of the atmosphere using the strong surface return signal is also presented. The five maiden flights of the HALO WV DIAL spanned the tropics through midlatitudes with a wide range of atmospheric conditions, but opportunities for validation were sparse. Comparisons to dropsonde WV profiles were qualitatively in good agreement, though statistical analysis was impossible due to systematic error in the dropsonde measurements. Comparison of HALO to in situ WV measurements onboard the aircraft showed no substantial bias across three orders of magnitude, despite variance (R2 = 0.66) that may be largely attributed to spatiotemporal variability. Precipitable water vapor measurements from the spaceborne sounders AIRS and IASI compared very well to HALO with R2 > 0.96 over ocean and R2 = 0.86 over land.


2021 ◽  
Author(s):  
◽  
Daniel P. Lowry

<p>Reconstructing past grounding-line evolution can help inform future sea level projections by constraining marine ice sheet sensitivities to changes in climate. The Ross Embayment, the largest sector of Antarctica, experienced substantial grounding-line retreat since the Last Glacial Maximum. However, different interpretations for the timing and spatial pattern of deglacial grounding-line retreat in this region persist, suggesting either very high or low sensitivity to external forcings. Complicating matters is the sparse paleoclimate record, which is limited spatially and temporally. In this thesis, I address these issues by analysing the output of two transient climate simulations in relation to Antarctic ice core and marine sediment records, and performing and analysing the largest ensemble to date of regional ice sheet model simulations of the last deglaciation in the Ross Sea. The climate models and paleoclimate proxy records exhibit key differences in the timing, magnitude and duration of millennial-scale climate change events through the deglacial period. Using this diverse set of deglacial climate trajectories as ocean and atmosphere forcings, the ice sheet model ensemble produces a wide range of ice sheet responses, supporting the view that external forcings are the main drivers of past grounding-line retreat in the region. The simulations demonstrate that atmospheric conditions early in the deglacial period can enhance or diminish ice sheet sensitivity to rising ocean temperatures, thereby controlling the initial timing and spatial pattern of grounding-line retreat. Through the Holocene, grounding-line position is more sensitive to sub-shelf melt rates as the ocean cavity below the ice shelf expands. Model parameters that control the physical properties of the bed, deformation of the continental shelf, and rheological properties of the ice strongly influence the sensitivity of ice sheets to external forcing. Basin-wide differences in these forcings, driven by oceanic and atmospheric circulation, and spatial heterogeneity of bed properties likely contribute to the asynchronous pattern of retreat in the eastern and western parts of the embayment, as indicated by marine and terrestrial proxy records.</p>


2005 ◽  
Vol 293-294 ◽  
pp. 183-192 ◽  
Author(s):  
Yanyang Zi ◽  
Xue Feng Chen ◽  
Zheng Jia He ◽  
Peng Chen

Wavelet transform is a powerful technique well suited to non-stationary signal processing. The properties of wavelet are determined by its basis function. In the fields of modal analysis, mechanical condition monitoring and fault diagnosis, impulse responses or transient responses are very common signals to be analyzed. The Laplace wavelet is a single-sided damped exponential wavelet and is a desirable wavelet basis to analyze signals of impulse response. A correlation filtering approach is introduced using the Laplace wavelet to identify the impulse response from vibration signals. Successful results are obtained in identifying the natural frequency of a hydro-generator shaft, and diagnosing the wear fault of intake valve of an internal combustion engine.


2021 ◽  
Author(s):  
Charles Enweugwu ◽  
Aghogho Monorien ◽  
Ikechukwu Mbeledogu ◽  
Adewale Dosunmu ◽  
Omowunmi Illedare

Abstract Most unitized Pipelines in Nigeria are Trunk lines which take crude oil from flow stations to the Terminals. Very few International Oil and Gas Companies own and operate trunk lines in Nigeria. As a result, marginal field owners, independent producers, and some JV partners share the trunk line for the sale of their crude. But because of the use of wide range of non-compliant meters by the injectors into the trunk lines a lot of line losses due to measurement errors are introduced. Another major feature is that trunk lines are exposed to leakages due to sabotage, aged pipeline and valve failures. The issue here is how does the owner of the trunk line back allocate these losses to their respective injectors. The Reverse Mass Balanced Methodology (RMBM) is currently in use having replaced Interim Methodology (IM) in 2017. In RMBM, the crude trunk line losses have been found to be unaccountable and it's proportionate rule for distribution of the losses to the producers are inequitable as the field owners expressed dissatisfaction with unfair deduction from trunk line operators. This study developed a procedure and an algorithm for estimation of crude contributions from each producer at the Terminal and equitable distribution of crude trunk line losses to the producers irrespective of the type of meters, meter factor and leakages and sporadic theft on the trunk lines. This study also identified two alternatives to the RMBM, the use of Artificial Intelligence (AI) and Flow based models. The results showed that flow-based model accounts for both individual and group losses, not accounted for in the RMBM, and allocates and corrects for leak volumes at the point of leak instead of at the terminal. This is a significant improvement from the RMBM.


Sign in / Sign up

Export Citation Format

Share Document