scholarly journals Discovery and directed evolution of nitroreductase enzymes for activation of prodrugs and PET imaging compounds

2021 ◽  
Author(s):  
◽  
Michelle Hedley Rich

<p><b>Bacterial nitroreductase enzymes, which exhibit the capacity to reduce a wide range of nitroaromatic drugs, antibiotics and environmental pollutants, have shown promise in the activation of prodrugs such as CB1954 and PR-104A. Use of these prodrugs in gene-directed enzyme prodrug therapy (GDEPT) cancer treatment would allow for targeted chemotherapy in tumour cells following specific delivery of nitroreductases to these cancerous tissues, using specialised bacterial or viral vectors. However, one key limitation in nitroreductase-based GDEPT is the current inability to rapidly and non-invasively determine vector localisation and gene delivery prior to systemic administration of prodrug. Dual-purpose nitroreductases that exhibit the ability to activate both GDEPT prodrugs and radioisotope-labelled PET imaging probes, in a manner that renders them temporarily cell-entrapped for detection using a PET scanner, would facilitate clinical development of this treatment.</b></p> <p>Previous attempts to repurpose hypoxia-activated 2-nitroimidazole PET imaging probes for nitroreductase detection have suffered from relatively high background activation under hypoxia alone. The design of nextgeneration 5-nitroimidazole PET imaging probes, by our collaborators at the Auckland Cancer Society Research Centre (ACSRC), has resulted in much lower levels of hypoxia activation in vivo.</p> <p>This thesis describes attempts to generate improved nitroreductases that can activate a bespoke 5-nitroimidazole PET-capable imaging probe, S33. A 58-membered library of nitroreductase candidates, including enzymes from many different bacterial species and oxidoreductase families, was heterologously over-expressed in E. coli screening strains. Microplate-based screening strategies were then used to identify enzymes that exhibited the most activity with S33, based on the ability of high levels of activated S33 to induce DNA damage and (at very high levels) E. coli cell death. Following this, site-targeted libraries of two different promising nitroreductase NfsA homologues were screened for S33 activity, with selected variants from eachlibrary showing improvement in S33 activation over the parent nitroreductase. In parallel I performed error-prone PCR mutagenesis of a top NfsA variant and top NfsB variant, subjecting each to two rounds of random mutagenesis, and selecting improved variants using a specialised E. coli screening strain and fluorescence-activated cell sorting (FACS). Selected variants from the NfsB (but not NfsA) nitroreductase candidate library showed substantially improved capacity to activate S33 over the parent enzyme.</p> <p>As an alternative means for developing improved nitroreductase variants, two different nitroaromatic ‘anti-prodrugs’, the anthelmintic niclosamide and the antibiotic chloramphenicol, whose cytotoxic effects on E. coli can be mitigated by the presence of an over-expressed active nitroreductase, were used to select for improved S33-activating enzymes from a site-targeted NfsA library. Variants were discovered that exhibited improved ability to active S33 as well as other nitroaromatic substrates of interest. Finally, attempts to discover novel nitroreductases from nature through the screening of cloned soil metagenomic fragments, were made utilising a novel cloning strategy to improve expression of the cloned gene fragments in E. coli. Screening and selection of nitroreductase gene ragments was conducted using niclosamide as well as nitroaromatic compounds that change colour upon activation.</p>

2021 ◽  
Author(s):  
◽  
Michelle Hedley Rich

<p><b>Bacterial nitroreductase enzymes, which exhibit the capacity to reduce a wide range of nitroaromatic drugs, antibiotics and environmental pollutants, have shown promise in the activation of prodrugs such as CB1954 and PR-104A. Use of these prodrugs in gene-directed enzyme prodrug therapy (GDEPT) cancer treatment would allow for targeted chemotherapy in tumour cells following specific delivery of nitroreductases to these cancerous tissues, using specialised bacterial or viral vectors. However, one key limitation in nitroreductase-based GDEPT is the current inability to rapidly and non-invasively determine vector localisation and gene delivery prior to systemic administration of prodrug. Dual-purpose nitroreductases that exhibit the ability to activate both GDEPT prodrugs and radioisotope-labelled PET imaging probes, in a manner that renders them temporarily cell-entrapped for detection using a PET scanner, would facilitate clinical development of this treatment.</b></p> <p>Previous attempts to repurpose hypoxia-activated 2-nitroimidazole PET imaging probes for nitroreductase detection have suffered from relatively high background activation under hypoxia alone. The design of nextgeneration 5-nitroimidazole PET imaging probes, by our collaborators at the Auckland Cancer Society Research Centre (ACSRC), has resulted in much lower levels of hypoxia activation in vivo.</p> <p>This thesis describes attempts to generate improved nitroreductases that can activate a bespoke 5-nitroimidazole PET-capable imaging probe, S33. A 58-membered library of nitroreductase candidates, including enzymes from many different bacterial species and oxidoreductase families, was heterologously over-expressed in E. coli screening strains. Microplate-based screening strategies were then used to identify enzymes that exhibited the most activity with S33, based on the ability of high levels of activated S33 to induce DNA damage and (at very high levels) E. coli cell death. Following this, site-targeted libraries of two different promising nitroreductase NfsA homologues were screened for S33 activity, with selected variants from eachlibrary showing improvement in S33 activation over the parent nitroreductase. In parallel I performed error-prone PCR mutagenesis of a top NfsA variant and top NfsB variant, subjecting each to two rounds of random mutagenesis, and selecting improved variants using a specialised E. coli screening strain and fluorescence-activated cell sorting (FACS). Selected variants from the NfsB (but not NfsA) nitroreductase candidate library showed substantially improved capacity to activate S33 over the parent enzyme.</p> <p>As an alternative means for developing improved nitroreductase variants, two different nitroaromatic ‘anti-prodrugs’, the anthelmintic niclosamide and the antibiotic chloramphenicol, whose cytotoxic effects on E. coli can be mitigated by the presence of an over-expressed active nitroreductase, were used to select for improved S33-activating enzymes from a site-targeted NfsA library. Variants were discovered that exhibited improved ability to active S33 as well as other nitroaromatic substrates of interest. Finally, attempts to discover novel nitroreductases from nature through the screening of cloned soil metagenomic fragments, were made utilising a novel cloning strategy to improve expression of the cloned gene fragments in E. coli. Screening and selection of nitroreductase gene ragments was conducted using niclosamide as well as nitroaromatic compounds that change colour upon activation.</p>


2020 ◽  
Vol 86 (24) ◽  
Author(s):  
Erin M. Nawrocki ◽  
Hillary M. Mosso ◽  
Edward G. Dudley

ABSTRACT Enterohemorrhagic Escherichia coli (EHEC) strains, including E. coli O157:H7, cause severe illness in humans due to the production of Shiga toxin (Stx) and other virulence factors. Because Stx is coregulated with lambdoid prophage induction, its expression is especially susceptible to environmental cues. Infections with Stx-producing E. coli can be difficult to model due to the wide range of disease outcomes: some infections are relatively mild, while others have serious complications. Probiotic organisms, members of the gut microbiome, and organic acids can depress Stx production, in many cases by inhibiting the growth of EHEC strains. On the other hand, the factors currently known to amplify Stx act via their effect on the stx-converting phage. Here, we characterize two interactive mechanisms that increase Stx production by O157:H7 strains: first, direct interactions with phage-susceptible E. coli, and second, indirect amplification by secreted factors. Infection of susceptible strains by the stx-converting phage can expand the Stx-producing population in a human or animal host, and phage infection has been shown to modulate virulence in vitro and in vivo. Acellular factors, particularly colicins and microcins, can kill O157:H7 cells but may also trigger Stx expression in the process. Colicins, microcins, and other bacteriocins have diverse cellular targets, and many such molecules remain uncharacterized. The identification of additional Stx-amplifying microbial interactions will improve our understanding of E. coli O157:H7 infections and help elucidate the intricate regulation of pathogenicity in EHEC strains.


2019 ◽  
Vol 116 (20) ◽  
pp. 10072-10080 ◽  
Author(s):  
Bradley E. Poulsen ◽  
Rui Yang ◽  
Anne E. Clatworthy ◽  
Tiantian White ◽  
Sarah J. Osmulski ◽  
...  

Genomics offered the promise of transforming antibiotic discovery by revealing many new essential genes as good targets, but the results fell short of the promise. While numerous factors contributed to the disappointing yield, one factor was that essential genes for a bacterial species were often defined based on a single or limited number of strains grown under a single or limited number of in vitro laboratory conditions. In fact, the essentiality of a gene can depend on both the genetic background and growth condition. We thus developed a strategy for more rigorously defining the core essential genome of a bacterial species by studying many pathogen strains and growth conditions. We assessed how many strains must be examined to converge on a set of core essential genes for a species. We used transposon insertion sequencing (Tn-Seq) to define essential genes in nine strains ofPseudomonas aeruginosaon five different media and developed a statistical model,FiTnEss, to classify genes as essential versus nonessential across all strain–medium combinations. We defined a set of 321 core essential genes, representing 6.6% of the genome. We determined that analysis of four strains was typically sufficient inP. aeruginosato converge on a set of core essential genes likely to be essential across the species across a wide range of conditions relevant to in vivo infection, and thus to represent attractive targets for novel drug discovery.


2010 ◽  
Vol 76 (14) ◽  
pp. 4655-4663 ◽  
Author(s):  
Sean M. Lee ◽  
Aaron Wyse ◽  
Aaron Lesher ◽  
Mary Lou Everett ◽  
Linda Lou ◽  
...  

ABSTRACT Although mice associated with a single bacterial species have been used to provide a simple model for analysis of host-bacteria relationships, bacteria have been shown to display adaptability when grown in a variety of novel environments. In this study, changes associated with the host-bacterium relationship in mice monoassociated with Escherichia coli K-12 over a period of 1,031 days were evaluated. After 80 days, phenotypic diversification of E. coli was observed, with the colonizing bacteria having a broader distribution of growth rates in the laboratory than the parent E. coli. After 1,031 days, which included three generations of mice and an estimated 20,000 generations of E. coli, the initially homogeneous bacteria colonizing the mice had evolved to have widely different growth rates on agar, a potential decrease in tendency for spontaneous lysis in vivo, and an increased tendency for spontaneous lysis in vitro. Importantly, mice at the end of the experiment were colonized at an average density of bacteria that was more than 3-fold greater than mice colonized on day 80. Evaluation of selected isolates on day 1,031 revealed unique restriction endonuclease patterns and differences between isolates in expression of more than 10% of the proteins identified by two-dimensional electrophoresis, suggesting complex changes underlying the evolution of diversity during the experiment. These results suggest that monoassociated mice might be used as a tool for characterizing niches occupied by the intestinal flora and potentially as a method of targeting the evolution of bacteria for applications in biotechnology.


2005 ◽  
Vol 49 (10) ◽  
pp. 4185-4196 ◽  
Author(s):  
Yutaka Ueda ◽  
Katsunori Kanazawa ◽  
Ken Eguchi ◽  
Koji Takemoto ◽  
Yoshiro Eriguchi ◽  
...  

ABSTRACT SM-216601 is a novel parenteral 1β-methylcarbapenem. In agar dilution susceptibility testing, the MIC of SM-216601 for 90% of the methicillin-resistant Staphylococcus aureus (MRSA) strains tested (MIC90) was 2 μg/ml, which was comparable to those of vancomycin and linezolid. SM-216601 was also very potent against Enterococcus faecium, including vancomycin-resistant strains (MIC90 = 8 μg/ml). SM-216601 exhibited potent activity against penicillin-resistant Streptococcus pneumoniae, ampicillin-resistant Haemophilus influenzae, Moraxella catarrhalis, Escherichia coli, Klebsiella pneumoniae, and Proteus mirabilis, with MIC90s of less than 0.5 μg/ml, and intermediate activity against Citrobacter freundii, Enterobacter cloacae, Serratia marcescens, and Pseudomonas aeruginosa. The therapeutic efficacy of SM-216601 against experimentally induced infections in mice caused by S. aureus, E. faecium, E. coli, and P. aeruginosa reflected its in vitro activity and plasma level. Thus, SM-216601 is a promising candidate for nosocomial bacterial infections caused by a wide range of gram-positive and gram-negative bacteria, including multiresistant pathogens.


1989 ◽  
Vol 258 (1) ◽  
pp. 187-192 ◽  
Author(s):  
R Brandsch ◽  
V Bichler ◽  
B Krauss

Expression of the 6-hydroxy-D-nicotine oxidase (6-HDNO) gene from Arthrobacter oxidans cloned into Escherichia coli showed a marked temperature-dependence. Transformed E. coli cells grown at 30 degrees C exhibited a several-fold higher 6-HDNO activity than did cells grown at 37 degrees C. This effect did not depend on the promoter used for expression of the cloned gene in E. coli, nor was it an effect of 6-HDNO mRNA instability at 37 degrees C. Studies performed in vivo and in vitro revealed that an increased susceptibility of apo-6-HDNO to proteolytic attack at 37 degrees C was responsible for the observed phenomenon. Extracts from cells grown at 37 degrees C showed on Western blots a decrease in immunologically detectable 6-HDNO polypeptide when compared with extracts from cells grown at 30 degrees C. The 6-HDNO polypeptide is covalently modified by attachment of the cofactor FAD to a histidine residue. It could be shown that covalent flavinylation of the apoenzyme in vitro, i.e. formation of holoenzyme, by incubation of cell extracts with FAD and phosphoenolpyruvate protected the 6-HDNO polypeptide from degradation at 37 degrees C. Of a variety of proteinase inhibitors tested only the cysteine-proteinase inhibitor L-3-trans-carboxyoxiran-2-carbonyl-L-leucylagmatine (E64) prevented degradation, by up to 70%, of the apoenzyme.


2015 ◽  
Vol 2015 ◽  
pp. 1-15 ◽  
Author(s):  
Kazuko Kobayashi ◽  
Takanori Sasaki ◽  
Fumiaki Takenaka ◽  
Hiromasa Yakushiji ◽  
Yoshihiro Fujii ◽  
...  

Mesothelin (MSLN) is a 40-kDa cell differentiation-associated glycoprotein appearing with carcinogenesis and is highly expressed in many human cancers, including the majority of pancreatic adenocarcinomas, ovarian cancers, and mesotheliomas, while its expression in normal tissue is limited to mesothelial cells lining the pleura, pericardium, and peritoneum. Clone 11-25 is a murine hybridoma secreting monoclonal antibody (mAb) against human MSLN. In this study, we applied the 11-25 mAb toin vivoimaging to detect MSLN-expressing tumors. Inin vitroandex vivoimmunochemical studies, we demonstrated specificity of 11-25 mAb to membranous MSLN expressed on several pancreatic cancer cells. We showed the accumulation of Alexa Fluor 750-labeled 11-25 mAb in MSLN-expressing tumor xenografts in athymic nude mice. Then, 11-25 mAb was labeled with64Cu via a chelating agent DOTA and was used in bothin vitrocell binding assay andin vivopositron emission tomography (PET) imaging in the tumor-bearing mice. We confirmed that64Cu-labeled 11-25 mAb highly accumulated in MSLN-expressing tumors as compared to MSLN-negative ones. The64Cu-labeled 11-25 mAb is potentially useful as a PET probe capable of being used for wide range of tumors, rather than18F-FDG that occasionally provides nonspecific accumulation into the inflammatory lesions.


2021 ◽  
Author(s):  
Deepak Bhat ◽  
Samuel Hauf ◽  
Charles Plessy ◽  
Yohei Yokobayashi ◽  
Simone Pigolotti

Replisomes are multi-protein complexes that replicate genomes with remarkable speed and accuracy. Despite their importance, the dynamics of replisomes along the genome is poorly characterised, especially in vivo. In this paper, we link the replisome dynamics with the DNA abundance distribution measured in an exponentially growing bacterial population. Our approach permits to accurately infer the replisome dynamics along the genome from deep sequencing measurements. As an application, we experimentally measured the DNA abundance distribution in Escherichia coli populations growing at different temperatures. We find that the average replisome speed increases nearly five-fold between 17°C and 37°C. Further, we observe wave-like variations of the replisome speed along the genome. These variations are correlated with previously observed variations of the mutation rate along the genome. We interpret this correlation as a speed--error trade-off and discuss its possible dynamical origin. Our approach has the potential to elucidate replication dynamics in E. coli mutants and in other bacterial species.


2019 ◽  
Author(s):  
Xinxing Yang ◽  
Ryan McQuillen ◽  
Zhixin Lyu ◽  
Polly Phillips-Mason ◽  
Ana De La Cruz ◽  
...  

AbstractDuring bacterial cell division, synthesis of new septal peptidoglycan (sPG) is crucial for successful cytokinesis and cell pole morphogenesis. FtsW, a SEDS (Shape, Elongation, Division and Sporulation) family protein and an indispensable component of the cell division machinery in all walled bacterial species, was recently identified in vitro as a new monofunctional peptidoglycan glycosyltransferase (PGTase). FtsW and its cognate monofunctional transpeptidase (TPase) class B penicillin binding protein (PBP3 or FtsI in E. coli) may constitute the essential, bifunctional sPG synthase specific for new sPG synthesis. Despite its importance, the septal PGTase activity of FtsW has not been documented in vivo. How its activity is spatiotemporally regulated in vivo has also remained unknown. Here we investigated the septal PGTase activity and dynamics of FtsW in E. coli cells using a combination of single-molecule imaging and genetic manipulations. We show that FtsW exhibits robust activity to incorporate an N-acetylmuramic acid analog at septa in the absence of other known PGTases, confirming FtsW as the essential septum-specific PGTase in vivo. Notably, we identified two populations of processive moving FtsW molecules at septa. A fast-moving population is driven by the treadmilling dynamics of FtsZ and independent of sPG synthesis. A slow-moving population is driven by active sPG synthesis and independent of FtsZ’s treadmilling dynamics. We further identified that FtsN, a potential sPG synthesis activator, plays an important role in promoting the slow-moving, sPG synthesis-dependent population. Our results support a two-track model, in which inactive sPG synthase molecules follow the fast treadmilling “Z-track” to be distributed along the septum; FtsN promotes their release from the “Z-track” to become active in sPG synthesis on the slow “sPG-track”. This model explains how the spatial information is integrated into the regulation of sPG synthesis activity and suggests a new mechanistic framework for the spatiotemporal coordination of bacterial cell wall constriction.


2021 ◽  
Author(s):  
Leonid V Aseev ◽  
Ludmila S Koledinskaya ◽  
Oksana S Bychenko ◽  
Irina V Boni

ABSTRACTAutogenous regulation of ribosomal protein (r-protein) synthesis plays a key role in maintaining the stoichiometry of ribosomal components in bacteria. Our main goal was to develop techniques for investigating the r-protein synthesis regulation in mycobacteria, Gram-positive organisms with a high GC-content, which has never been addressed. We started with the rpsO gene known to be autoregulated by its product, r-protein S15, in a broad range of bacterial species. To study the in vivo regulation of rpsO from Mycobacterium smegmatis (Msm), we first applied an approach based on chromosomally integrated Msm rpsO’-’lacZ reporters by using E. coli as a surrogate host. The β-galactosidase assay has shown that mycobacterial rpsO expression is feedback regulated at the translation level in the presence of Msm S15 in trans, like in E. coli. Next, to overcome difficulties caused by the inefficiency of mycobacterial gene expression in E. coli, we created a fluorescent reporter system based on M. smegmatis. To this end, the integrative shuttle plasmid pMV306 was modified to provide insertion of the Msm or Mtb (M. tuberculosis) rpsO-egfp reporters into the Msm chromosome, and a novel E. coli-mycobacteria replicative shuttle vector, pAMYC, a derivative of pACYC184, was built. Analysis of the eGFP expression in the presence of the pAMYC derivative expressing Msm rpsO vs an empty vector confirms the autogenous regulation of the rpsO gene in mycobacteria. Additionally, we have revealed that the mycobacterial rpsO core promoters are rather weak and require upstream activating elements to enhance their strength.IMPORTANCEBacterial ribosomes are targets for a majority of as-yet reported antibiotics, hence ribosome biogenesis and its regulation are central for development of new antimicrobials. One of the key mechanisms regulating ribosome biogenesis in bacteria is the autogenous control of r-protein synthesis, which has been so far explored for E. coli and Bacillus spp. but not yet for mycobacteria. Here, we describe experimental approaches for in vivo analysis of mechanisms regulating r-protein synthesis in mycobacteria, including M. tuberculosis, and show, for the first time, that the autogenous control at the translation level is really functioning in these microorganisms. The developed system paves the way for studying various regulatory circuits involving proteins or sRNAs as mRNA- targeting trans-regulators in mycobacteria as well as in other actinobacterial species.


Sign in / Sign up

Export Citation Format

Share Document