scholarly journals COLLEGE STUDENT’S ERROR ANALYSIS BASED ON THEIR MATHEMATICAL CONNECTIONS ON GRAPH REPRESENTATION

2019 ◽  
Vol 4 (1) ◽  
pp. 18
Author(s):  
I ketut Suastika ◽  
Vivi Suwanti

This study is investigates the college student’s errors on their graph representations making based on the mathematical connections indicators. Pilot studies were conducted with 4 college students of middle to high ability in Graph Theory class. Data analyze revealed that top 3 subject’s errors are 1) Finding the relations of a representations to it’s concepts and procedures, 2) Applying mathematics in other sciences or real life problems, and 3) Finding relations among procedures of the equivalent representations. Their lack of graph concepts understanding and it’s connections plays the major role in their errors. They failed at recognizing and choosing the suitable properties of graph which able to detect the error of their graph representation. So, in order to decrease college student errors in graph representations, we need to strengthen their basic concepts and its connections.

Author(s):  
Vadim Zverovich

This chapter gives a brief overview of selected applications of graph theory, many of which gave rise to the development of graph theory itself. A range of such applications extends from puzzles and games to serious scientific and real-life problems, thus illustrating the diversity of applications. The first section is devoted to the six earliest applications of graph theory. The next section introduces so-called scale-free networks, which include the web graph, social and biological networks. The last section describes a number of graph-theoretic algorithms, which can be used to tackle a number of interesting applications and problems of graph theory.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Sami Ullah Khan ◽  
Abdul Nasir ◽  
Naeem Jan ◽  
Zhen-Hua Ma

Neutrosophic graph (NG) is a powerful tool in graph theory, which is capable of modeling many real-life problems with uncertainty due to unclear, varying, and indeterminate information. Meanwhile, the fuzzy graphs (FGs) and intuitionistic fuzzy graphs (IFGs) may not handle these problems as efficiently as NGs. It is difficult to model uncertainty due to imprecise information and vagueness in real-world scenarios. Many real-life optimization problems are modeled and solved using the well-known fuzzy graph theory. The concepts of covering, matching, and paired domination play a major role in theoretical and applied neutrosophic environments of graph theory. Henceforth, the current study covers this void by introducing the notions of covering, matching, and paired domination in single-valued neutrosophic graph (SVNG) using the strong edges. Also, many attention-grabbing properties of these concepts are studied. Moreover, the strong covering number, strong matching number, and the strong paired domination number of complete SVNG, complete single-valued neutrosophic cycle (SVNC), and complete bipartite SVNG are worked out along with their fascinating properties.


Mathematics ◽  
2019 ◽  
Vol 7 (6) ◽  
pp. 551 ◽  
Author(s):  
Liangsong Huang ◽  
Yu Hu ◽  
Yuxia Li ◽  
P. K. Kishore Kumar ◽  
Dipak Koley ◽  
...  

Fuzzy graph theory is a useful and well-known tool to model and solve many real-life optimization problems. Since real-life problems are often uncertain due to inconsistent and indeterminate information, it is very hard for an expert to model those problems using a fuzzy graph. A neutrosophic graph can deal with the uncertainty associated with the inconsistent and indeterminate information of any real-world problem, where fuzzy graphs may fail to reveal satisfactory results. The concepts of the regularity and degree of a node play a significant role in both the theory and application of graph theory in the neutrosophic environment. In this work, we describe the utility of the regular neutrosophic graph and bipartite neutrosophic graph to model an assignment problem, a road transport network, and a social network. For this purpose, we introduce the definitions of the regular neutrosophic graph, star neutrosophic graph, regular complete neutrosophic graph, complete bipartite neutrosophic graph, and regular strong neutrosophic graph. We define the d m - and t d m -degrees of a node in a regular neutrosophic graph. Depending on the degree of the node, this paper classifies the regularity of a neutrosophic graph into three types, namely d m -regular, t d m -regular, and m-highly irregular neutrosophic graphs. We present some theorems and properties of those regular neutrosophic graphs. The concept of an m-highly irregular neutrosophic graph on cycle and path graphs is also investigated in this paper. The definition of busy and free nodes in a regular neutrosophic graph is presented here. We introduce the idea of the μ -complement and h-morphism of a regular neutrosophic graph. Some properties of complement and isomorphic regular neutrosophic graphs are presented here.


2015 ◽  
Vol 23 (4) ◽  
pp. 567-577 ◽  
Author(s):  
C. M. R. Caridade ◽  
A. H. Encinas ◽  
J. Martín-Vaquero ◽  
A. Queiruga-Dios

Author(s):  
Mehdi Iranpoor

Graph theory has many applications in solving real-life problems. However, the application of Eulerian graphs and Eulerian tours/trails seems to be comparatively limited. In this chapter, an application of graph theory in handwriting recognition is presented. There are a lot of studies regarding handwriting recognition. Most of these methods deal with either offline or online handwriting recognition. However, the discussed approaches in this chapter are distinct in the manner that they aim to extract the trajectory of writing so as to equip the offline handwritten image with temporal information. When the trajectory of writing is known, it can be possible to utilize online recognition methods which are more reliable. These trajectory extracting methods are based on Eulerian trails in semi-Eulerian graphs. Semi-Eulerian graphs are graphs with at most two odd vertices. Eulerian trail is a trail in which every edge is traversed exactly once. The methods can be helpful in recognition of single-stroke handwritten images. Relying on the minimum energy law, the methods try to find the smoothest trajectory of writing which contribute to the recognition process.


2008 ◽  
Vol 36 (4) ◽  
pp. 294-319
Author(s):  
Nevo Ta'aseh ◽  
Offer Shai

The paper introduces an approach to the analysis of skeletal structures in which they are represented by a discrete mathematical model called graph representation. The paper shows that the reasoning upon the structure can be performed solely upon the representation, which, besides the theoretical value, presents a powerful educational tool. Students can learn skeletal structures entirely through the graph representations and derive advanced structural topics, including the conjugate theorem and the unit force method from the theorems and principles of network graph theory. The graph representations used in the paper for structures have also been applied to represent systems from different engineering disciplines. This provides students with a multidisciplinary perspective on analysis of engineering systems in general, and skeletal structures in particular.


1970 ◽  
Author(s):  
Matisyohu Weisenberg ◽  
Carl Eisdorfer ◽  
C. Richard Fletcher ◽  
Murray Wexler

2021 ◽  
Vol 11 (11) ◽  
pp. 4757
Author(s):  
Aleksandra Bączkiewicz ◽  
Jarosław Wątróbski ◽  
Wojciech Sałabun ◽  
Joanna Kołodziejczyk

Artificial Neural Networks (ANNs) have proven to be a powerful tool for solving a wide variety of real-life problems. The possibility of using them for forecasting phenomena occurring in nature, especially weather indicators, has been widely discussed. However, the various areas of the world differ in terms of their difficulty and ability in preparing accurate weather forecasts. Poland lies in a zone with a moderate transition climate, which is characterized by seasonality and the inflow of many types of air masses from different directions, which, combined with the compound terrain, causes climate variability and makes it difficult to accurately predict the weather. For this reason, it is necessary to adapt the model to the prediction of weather conditions and verify its effectiveness on real data. The principal aim of this study is to present the use of a regressive model based on a unidirectional multilayer neural network, also called a Multilayer Perceptron (MLP), to predict selected weather indicators for the city of Szczecin in Poland. The forecast of the model we implemented was effective in determining the daily parameters at 96% compliance with the actual measurements for the prediction of the minimum and maximum temperature for the next day and 83.27% for the prediction of atmospheric pressure.


2021 ◽  
Vol 13 (6) ◽  
pp. 3465
Author(s):  
Jordi Colomer ◽  
Dolors Cañabate ◽  
Brigita Stanikūnienė ◽  
Remigijus Bubnys

In the face of today’s global challenges, the practice and theory of contemporary education inevitably focuses on developing the competences that help individuals to find meaningfulness in their societal and professional life, to understand the impact of local actions on global processes and to enable them to solve real-life problems [...]


Sign in / Sign up

Export Citation Format

Share Document