scholarly journals PLTS Transformerless Tegangan 20 kV menggunakan Cascaded H-Bridge Multilevel Inverter

Author(s):  
ANGGARA BRAJAMUSTHI ◽  
SRI UTAMI ◽  
DJAFAR SODIQ

ABSTRAKAplikasi dari inverter multilevel pada sistem Pusat Listrik Tenaga Surya (PLTS) dapat menghilangkan kebutuhan terhadap transformator, sehingga dapat mengurangi biaya investasi, mengurangi kompleksitas instalasi dan menghilangkan rugi-rugi daya transformator. Pada penelitian ini, sebuah inverter dengan topologi Cascaded H-Bridge Multilevel Inverter dirancang agar mampu mengubah tegangan rendah DC dari beberapa Photovoltaic (PV) array menjadi tegangan fasa-fasa 20 kV AC. Perancangan menghasilkan sebuah inverter 3 fasa 27-level dimana setiap level masing-masing memiliki PV array, DC-DC boost converter, H-bridge inverter, dan keluaran 3 fasa terhubung dengan filter LCL. Setiap komponen dari inverter dan sistem tersebut kemudian dimodelkan pada MATLAB Simulink untuk mensimulasikan kinerja dari setiap komponen dan sistem pada Standard Test Condition (STC) dari modul PV. Pada keadaan STC, daya 3 fasa maksimum yang dapat dihasilkan adalah 1,716 MW atau 68,54% dari daya DC maksimum sebesar 2,5 MWp. Sistem dapat menghasilkan tegangan fasa-fasa keluaran sebesar 20 kV dengan Total Harmonic Distortion (THD) di bawah 5%.Kata kunci: Pusat Listrik Tenaga Surya (PLTS), photovoltaic, Cascaded H-Bridge Multilevel InverterABSTRACTThe application of Multilevel Inverter in a Photovoltaic Solar Power Plant system could eliminate the needs of step-up transformer, which will reduce the system investment cost, simplify the system installation and also eliminate power losses of the transformer. In this paper, an inverter design was proposed with Cascaded H-Bridge Multilevel Inverter topology that is capable of converting low voltage DC power from several PV arrays into 20 kV AC power. The design resulted a 3 phase 27-level inverter where each level in the inverter has its own photovoltaic array, DC-DC boost converter, H-bridge inverter, and the 3 phase output is connected to LCL filter. Each component of the Inverter and the system were then modelled in MATLAB Simulink to simulate the operation of the components and the system at PV Standard Test Condition (STC). At STC, the maximum 3 phase output power of the system is 1,716 MW or 68,54% of maximum DC power of 2,5 MWp. The system can reach 20 kV of output voltage with less than 5% THD. Keywords: Photovoltaic Power Plant System, PV, Cascaded H-Bridge Multilevel Inverter

2014 ◽  
Vol 573 ◽  
pp. 668-672
Author(s):  
Tatipamula Mohana ◽  
Nallaperumal Chellammal ◽  
Smrithi Vijayan

This paper deals with the mitigation of voltage sag and harmonic profile improvement in a microgrid system. The microgrid system contains a hybrid combination of PV array, Battery interfaced with a cascaded multilevel inverter through a boost converter. The microgrid feeds a non-linear balanced load. The occurrence of voltage sag in the microgrid is compensated using the reference current for mitigation by using the SRF theory. The proposed power quality conditioner can compensate the voltage variations and harmonic profile distortions caused by the load changes. The efficacy of the proposed power quality conditioner in the microgrid system is validated through the MATLAB/Simulink.


2016 ◽  
Vol 839 ◽  
pp. 59-64
Author(s):  
Nattawut Khaosaad ◽  
Nipon Ketjoy ◽  
Sarayooth Vaivudh ◽  
Kobsak Sriprapha

A novel technique has been developed for PV array internal resistance measurement while keeping the plant in operation in contrary to flash test or basic equation (Eb) for which the modules need to be disconnected from the system. We present an equation developed for the array’s internal resistance measurement for PV technologies namely Amorphous Silicon (a-Si), Poly Crystalline Silicon (p-Si) and Hybrid Crystalline Silicon (HIT). Monthly Measured I-V characteristic curves of PV Array were converted to Standard Test Conditions following the IEC 60891 standard. Multiple regression analysis and linear regression technique were used to develop the equation for estimating the PV array internal resistance. The developed equations (Ed) will find the relationships of the 4 variables that are Series resistance (Rs), Shunt resistance (Rsh), maximum voltage (Vm) and maximum current (Im). The results revealed that the Ed can be applied to measure the PV array internal resistance value with low error margin than Eb. The series resistance calculated using Ed is higher than Eb about 1.11 %, 1.88 % and 0.87 % for a-Si, p-Si and HIT respectively. The shunt resistance calculated using Ed is higher than Eb about 0.07 %, 0.09 % and 0.09% for a-Si, p-Si and HIT respectively.


Author(s):  
Mohammad Syahir Bin Ishak ◽  
Rahmatul Hidayah Salimin ◽  
Ismail Musirin ◽  
Zulkiffli Abdul Hamid

This paper investigates the performances of different photovoltaic (PV) array under several shading condition. Four types of photovoltaic array configuration scheme which are ‘Series’ (S), Series-Parallel’ (SP), Total-Cross-Tied’ (TCT), and ‘Bridge-Link’ (BL) array topologies were tested by applying a 6x6 PV array under 6 different shading scenarios. The modeling is developed using Matlab/Simulink. The performances and output characteristics of photovoltaic array are compared and analyzed. System engineer can use the detailed characteristics of different array configuration to approximate the outcome power and pick the best configuration of the system by concerning the current natural condition to enhance the overall efficiency.


Author(s):  
Oumnia Lagdani ◽  
Mourad Trihi ◽  
Badre Bossoufi

The purpose of this article is to extract the maximum power point at which the photovoltaic system can operate optimally. The system considered is simulated under different irradiations (between 200 W/m<sup>2</sup> and 1000 W/m<sup>2</sup>), it mainly includes the established models of solar PV and MPPT module, a DC/DC boost converter and a DC/AC converter. The most common MPPT techniques that will be studied are: "Perturbation and Observation" (P&amp;O) method, "Incremental Conductance" (INC) method, and "Fuzzy Logic" (FL) control. Simulation results obtained using MATLAB/Simulink are analyzed and compared to evaluate the performance of each of the three techniques.


10.29007/m2mq ◽  
2018 ◽  
Author(s):  
Shubham R. Patel ◽  
Gaurang K. Sharma ◽  
Ashish R. Patel

Multilevel inverter allows the production of high voltage with lower harmonic distortion in ac output and it eliminates the need of transformer. With the usage of multilevel inverter, we can get the required ac voltage output from multiple dc voltage rails. One of the disadvantage in it is the unbalancing of dc link capacitor voltage. The basic aim of this paper is the balancing of dc link capacitor voltage in diode-clamped multilevel inverter. There are different approaches which could be used for balancing of the capacitor voltage. In this paper, the method of additional auxiliary circuit in the form of Two-level Boost converter is being adopted to balance the inner capacitor voltages so as to get the required multilevel output. This balancing leads to the reliability in the inverter output voltage and extension in life of capacitor. The simulations for this are being performed in MATLAB SIMULINK® and the result are being analyzed for the same by employing it for different load condition. The scheme thus offer the proper balancing of capacitor voltage.


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4563
Author(s):  
Muhammad Ali ◽  
Ghulam Hafeez ◽  
Ajmal Farooq ◽  
Zeeshan Shafiq ◽  
Faheem Ali ◽  
...  

This paper proposes a hybrid control scheme for a newly devised hybrid multilevel inverter (HMLI) topology. The circuit configuration of HMLI is comprised of a cascaded converter module (CCM), connected in series with an H-bridge converter. Initially, a finite set model predictive control (FS-MPC) is adopted as a control scheme, and theoretical analysis is carried out in MATLAB/Simulink. Later, in the real-time implementation of the HMLI topology, a hybrid control scheme which is a variant of the FS-MPC method has been proposed. The proposed control method is computationally efficient and therefore has been employed to the HMLI topology to mitigate the high-frequency switching limitation of the conventional MPC. Moreover, a comparative analysis is carried to illustrate the advantages of the proposed work that includes low switching losses, higher efficiency, and improved total harmonic distortion (THD) in output current. The inverter topology and stability of the proposed control method have been validated through simulation results in MATLAB/Simulink environment. Experimental results via low-voltage laboratory prototype have been added and compared to realize the study in practice.


Energies ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 5109
Author(s):  
Krystian Siczek ◽  
Krzysztof Siczek ◽  
Piotr Piersa ◽  
Łukasz Adrian ◽  
Szymon Szufa ◽  
...  

The stationary photovoltaic array can be used to charge the different vehicle batteries and, in parallel, be used as a power source for the utility grid or standalone devices placed such as in campers. The main objective of the study was to compare chosen electrical characteristics of two assemblies with each containing the same PV array, boost converter and inverter, and a different battery, such as the Li-S one and the Li-ion one, respectively. Differences occurring during modelling of Li-ion and Li-S batteries were discussed. The model of the chosen photovoltaic array was used during analysis. The models based on electrical equivalent circuits for Li-ion battery and of Li-S battery were utilized during calculations. The models of the boost converter and boost inverter of known topology parameters were utilized during simulations. In the chosen performances (courses of voltages and currents versus time) obtained from the simulation of the sets composed of the Li-S battery cooperating with the boost inverter or the boost converter, only small differences or no differences occurred when compared to the case of the Li-ion battery.


2020 ◽  
Vol 54 (4) ◽  
pp. 503-527
Author(s):  
Charanjeet Madan ◽  
Naresh Kumar

PurposeBy means of the massive environmental and financial reimbursements, wind turbine (WT) has turned out to be a satisfactory substitute for the production of electricity by nuclear or fossil power plants. Numerous research studies are nowadays concerning the scheme to develop the performance of the WT into a doubly fed induction generator-low voltage ride-through (DFIG-LVRT) system, with utmost gain and flexibility. To overcome the nonlinear characteristics of WT, a photovoltaic (PV) array is included along with the WT to enhance the system’s performance.Design/methodology/approachThis paper intends to simulate the control system (CS) for the DFIG-LVRT system with PV array operated by the MPPT algorithm and the WT that plays a major role in the simulation of controllers to rectify the error signals. This paper implements a novel method called self-adaptive whale with fuzzified error (SWFE) design to simulate the optimized CS. In addition, it distinguishes the SWFE-based LVRT system with standard LVRT system and the system with minimum and maximum constant gain.FindingsThrough the performance analysis, the value of gain with respect to the number of iterations, it was noted that at 20th iteration, the implemented method was 45.23% better than genetic algorithm (GA), 50% better than particle swarm optimization (PSO), 2.3% better than ant bee colony (ABC) and 28.5% better than gray wolf optimization (GWO) techniques. The investigational analysis has authenticated that the implemented SWFE-dependent CS was effectual for DFIG-LVRT, when distinguished with the aforementioned techniques.Originality/valueThis paper presents a technique for simulating the CS for DFIG-LVRT system using the SWFE algorithm. This is the first work that utilizes SWFE-based optimization for simulating the CS for the DFIG-LVRT system with PV array and WT.


Sign in / Sign up

Export Citation Format

Share Document