scholarly journals Simulation of Closed Loop Single Switch Quadratic Boost Converter and Cascaded H-Bridge Multilevel Inverter for PV Micro Grids using MATLAB/SIMULINK

Author(s):  
Vishnu. S
2014 ◽  
Vol 573 ◽  
pp. 668-672
Author(s):  
Tatipamula Mohana ◽  
Nallaperumal Chellammal ◽  
Smrithi Vijayan

This paper deals with the mitigation of voltage sag and harmonic profile improvement in a microgrid system. The microgrid system contains a hybrid combination of PV array, Battery interfaced with a cascaded multilevel inverter through a boost converter. The microgrid feeds a non-linear balanced load. The occurrence of voltage sag in the microgrid is compensated using the reference current for mitigation by using the SRF theory. The proposed power quality conditioner can compensate the voltage variations and harmonic profile distortions caused by the load changes. The efficacy of the proposed power quality conditioner in the microgrid system is validated through the MATLAB/Simulink.


10.29007/m2mq ◽  
2018 ◽  
Author(s):  
Shubham R. Patel ◽  
Gaurang K. Sharma ◽  
Ashish R. Patel

Multilevel inverter allows the production of high voltage with lower harmonic distortion in ac output and it eliminates the need of transformer. With the usage of multilevel inverter, we can get the required ac voltage output from multiple dc voltage rails. One of the disadvantage in it is the unbalancing of dc link capacitor voltage. The basic aim of this paper is the balancing of dc link capacitor voltage in diode-clamped multilevel inverter. There are different approaches which could be used for balancing of the capacitor voltage. In this paper, the method of additional auxiliary circuit in the form of Two-level Boost converter is being adopted to balance the inner capacitor voltages so as to get the required multilevel output. This balancing leads to the reliability in the inverter output voltage and extension in life of capacitor. The simulations for this are being performed in MATLAB SIMULINK® and the result are being analyzed for the same by employing it for different load condition. The scheme thus offer the proper balancing of capacitor voltage.


Author(s):  
Nandha Gopal J ◽  
Muthuselvan NB

This paper displays an simple method for identification of controller for wind based Quadratic Boost Converter Inverter system. India, being the fourth largest wind power generator has attracted numerous researchers towards the improvement of wind energy conversion system. This paper also presents improved controller techniques for a Permanent Magnet Synchronous Generator (PMSG) coupled with Cascaded Quadratic Boost Converter (QBC) and Space Vector Modulation Inverter (SVMI). The digital simulation and execution of PMSG based wind turbine along with QBC and SVM Inverter is presented in a closed loop system. The performance of closed loop system is realized using Proportional Integral (PI) and Fractional Order Proportional Integral (FOPI) controllers. Initially, the AC power from PMSG wind turbine is rectified to DC using rectifier circuit. The DC power from the bridge rectifier is then boosted to the required level using quadratic boost converter. The output from QBC is then given to the SVM inverter. The closed loop investigations are carried with PI and FOPI controllers. The simulation results of both PI and FOPI controlled QBC are compared. The outcome of FOPI controller represents that the steady state error and settling time are reduced when compared to PI controlled closed loop Quadratic Boost Converter. The overall Matlab/simulink model is applied to undergraduate/postgraduate course as a educational tool and assessed thoroughly.


Author(s):  
ANGGARA BRAJAMUSTHI ◽  
SRI UTAMI ◽  
DJAFAR SODIQ

ABSTRAKAplikasi dari inverter multilevel pada sistem Pusat Listrik Tenaga Surya (PLTS) dapat menghilangkan kebutuhan terhadap transformator, sehingga dapat mengurangi biaya investasi, mengurangi kompleksitas instalasi dan menghilangkan rugi-rugi daya transformator. Pada penelitian ini, sebuah inverter dengan topologi Cascaded H-Bridge Multilevel Inverter dirancang agar mampu mengubah tegangan rendah DC dari beberapa Photovoltaic (PV) array menjadi tegangan fasa-fasa 20 kV AC. Perancangan menghasilkan sebuah inverter 3 fasa 27-level dimana setiap level masing-masing memiliki PV array, DC-DC boost converter, H-bridge inverter, dan keluaran 3 fasa terhubung dengan filter LCL. Setiap komponen dari inverter dan sistem tersebut kemudian dimodelkan pada MATLAB Simulink untuk mensimulasikan kinerja dari setiap komponen dan sistem pada Standard Test Condition (STC) dari modul PV. Pada keadaan STC, daya 3 fasa maksimum yang dapat dihasilkan adalah 1,716 MW atau 68,54% dari daya DC maksimum sebesar 2,5 MWp. Sistem dapat menghasilkan tegangan fasa-fasa keluaran sebesar 20 kV dengan Total Harmonic Distortion (THD) di bawah 5%.Kata kunci: Pusat Listrik Tenaga Surya (PLTS), photovoltaic, Cascaded H-Bridge Multilevel InverterABSTRACTThe application of Multilevel Inverter in a Photovoltaic Solar Power Plant system could eliminate the needs of step-up transformer, which will reduce the system investment cost, simplify the system installation and also eliminate power losses of the transformer. In this paper, an inverter design was proposed with Cascaded H-Bridge Multilevel Inverter topology that is capable of converting low voltage DC power from several PV arrays into 20 kV AC power. The design resulted a 3 phase 27-level inverter where each level in the inverter has its own photovoltaic array, DC-DC boost converter, H-bridge inverter, and the 3 phase output is connected to LCL filter. Each component of the Inverter and the system were then modelled in MATLAB Simulink to simulate the operation of the components and the system at PV Standard Test Condition (STC). At STC, the maximum 3 phase output power of the system is 1,716 MW or 68,54% of maximum DC power of 2,5 MWp. The system can reach 20 kV of output voltage with less than 5% THD. Keywords: Photovoltaic Power Plant System, PV, Cascaded H-Bridge Multilevel Inverter


2014 ◽  
Vol 573 ◽  
pp. 78-82
Author(s):  
Gopal Janaki ◽  
A. Senthil Kumar

This paper explores the level of conducted EMI in a buck boost converter under a non linear load condition based on the CISPR 11 / Class A EMC standard. Here, the buck boost converter was designed to produce a constant output voltage irrespective of load conditions. The closed loop control is designed using dsPIC controller. Three different randomization firing schemes are adopted and the EMI analysis in each mode is done experimentally. Also, the results are compared with normal PWM scheme. The experimental result shows that in RPWM scheme the emission levels are comparatively low.


2021 ◽  
Vol 13 (19) ◽  
pp. 11059
Author(s):  
Shahrukh Khan ◽  
Arshad Mahmood ◽  
Mohammad Zaid ◽  
Mohd Tariq ◽  
Chang-Hua Lin ◽  
...  

High gain DC-DC converters are getting popular due to the increased use of renewable energy sources (RESs). Common ground between the input and output, low voltage stress across power switches and high voltage gain at lower duty ratios are desirable features required in any high gain DC-DC converter. DC-DC converters are widely used in DC microgrids to supply power to meet local demands. In this work, a high step-up DC-DC converter is proposed based on the voltage lift (VL) technique using a single power switch. The proposed converter has a voltage gain greater than a traditional boost converter (TBC) and Traditional quadratic boost converter (TQBC). The effect of inductor parasitic resistances on the voltage gain of the converter is discussed. The losses occurring in various components are calculated using PLECS software. To confirm the performance of the converter, a hardware prototype of 200 W is developed in the laboratory. The simulation and hardware results are presented to determine the performance of the converter in both open-loop and closed-loop conditions. In closed-loop operation, a PI controller is used to maintain a constant output voltage when the load or input voltage is changed.


2017 ◽  
Vol 7 (1.5) ◽  
pp. 209
Author(s):  
B.Vijaya Krishna ◽  
B. Venkata Prashanth ◽  
P. Sujatha

Multilevel Inverters (MLI) have very good features when compared to Inverters. But using more switches in the conventional configuration will reduce its application in a wider range. For that reason a modified 7-level MLI Topology is presented. This new topology consists of less number of switches that can be reduced to the maximum extent and a separate gate trigger circuit. This will reduce the switching losses, reduce the size of the multilevel inverter, and cost of installation. This new topology can be used in Electrical drives and renewable energy applications. Performance of the new MLI is tested via. Total harmonic distortion. This construction structure of this multilevel inverter topology can also be increased for 9-level, 11-level and so on and simulated by the use of MATLAB/SIMULINK. A separate Carrier Based PWM Technique is used for the pulse generation in this configuration.


Sign in / Sign up

Export Citation Format

Share Document