scholarly journals Effect of Acute Sodium Bicarbonate Intake on Sprint-Intermittent Performance and Blood Biochemical Responses in Well-Trained Sprinters

2021 ◽  
Vol 10 (1) ◽  
pp. 5-10
Author(s):  
Mohammad Fayiz AbuMoh’d ◽  
◽  
Walid Alsababha ◽  
Yazan Haddad ◽  
Ghaid Obeidat ◽  
...  

The present study was designed to determine the acute effect of sodium bicarbonate (NaHCO3) on the number of sprint repetitions during sprint high-intensity intermittent testing. In addition, blood biochemical (pH, HCO3-, and lactate) responses measured in three occasions were investigated. Thirteen male well-trained sprinters (24.65±3.44 yrs) performed two consecutive trials (7 days apart). Athletes were assigned randomly either to ingest a single dose of NaHCO3 (0.3 g/kg) 1 h prior to exercise or placebo using a double-blind crossover design. The intermittent sprint test consisted of 60 s treadmill sprints (90% of maximal work done) and 30-s recovery repeated intermittently until volitional exhaustion. Blood samples were collected from all athletes before exercise, after 1 h of dose intake, and after exercise in each trial. Paired sample t-testing showed that athletes complete significantly more sprint repetitions (p=0.036) during the intermittent sprint test with NaHCO3 (6.846±3.114) than with the placebo (5.538±3.872). Data also revealed no differences between trials in all blood responses at pre-exercise. After 1 h of dose consumption, however, blood pH and HCO3- were higher with NaHCO3 than with placebo (p<0.05), but no differences were noted in lactate between trials (p>0.05). After completion of the test, all blood responses were significantly higher with NaHCO3 than with placebo (p<0.05). In conclusion, intake of 0.3 g/kg of NaHCO3 1 h prior to treadmill sprint-intermittent performance increased sprint repetitions in well-trained sprinters, probably due to activated glycolysis caused by intracellular protons efflux into the blood.

Author(s):  
Rebecca L. Jones ◽  
Trent Stellingwerff ◽  
Paul Swinton ◽  
Guilherme Giannini Artioli ◽  
Bryan Saunders ◽  
...  

This study determined the influence of a high- (HI) versus low-intensity (LI) cycling warm-up on blood acid-base responses and exercise capacity following ingestion of sodium bicarbonate (SB; 0.3 g/kg body mass) or a placebo (PLA; maltodextrin) 3 hr prior to warm-up. Twelve men (21 ± 2 years, 79.2 ± 3.6 kg body mass, and maximum power output [Wmax] 318 ± 36 W) completed a familiarization and four double-blind trials in a counterbalanced order: HI warm-up with SB, HI warm-up with PLA, LI warm-up with SB, and LI warm-up with PLA. LI warm-up was 15 min at 60% Wmax, while the HI warm-up (typical of elites) featured LI followed by 2 × 30 s (3-min break) at Wmax, finishing 30 min prior to a cycling capacity test at 110% Wmax. Blood bicarbonate and lactate were measured throughout. SB supplementation increased blood bicarbonate (+6.4 mmol/L; 95% confidence interval, CI [5.7, 7.1]) prior to greater reductions with HI warm-up (−3.8 mmol/L; 95% CI [−5.8, −1.8]). However, during the 30-min recovery, blood bicarbonate rebounded and increased in all conditions, with concentrations ∼5.3 mmol/L greater with SB supplementation (p < .001). Blood bicarbonate significantly declined during the cycling capacity test at 110%Wmax with greater reductions following SB supplementation (−2.4 mmol/L; 95% CI [−3.8, −0.90]). Aligned with these results, SB supplementation increased total work done during the cycling capacity test at 110% Wmax (+8.5 kJ; 95% CI [3.6, 13.4], ∼19% increase) with no significant main effect of warm-up intensity (+0.0 kJ; 95% CI [−5.0, 5.0]). Collectively, the results demonstrate that SB supplementation can improve HI cycling capacity irrespective of prior warm-up intensity, likely due to blood alkalosis.


2016 ◽  
Vol 41 (4) ◽  
pp. 354-361 ◽  
Author(s):  
Matthew F. Higgins ◽  
Susie Wilson ◽  
Cameron Hill ◽  
Mike J. Price ◽  
Mike Duncan ◽  
...  

This study evaluated the effects of ingesting sodium bicarbonate (NaHCO3) or caffeine individually or in combination on high-intensity cycling capacity. In a counterbalanced, crossover design, 13 healthy, noncycling trained males (age: 21 ± 3 years, height: 178 ± 6 cm, body mass: 76 ± 12 kg, peak power output (Wpeak): 230 ± 34 W, peak oxygen uptake: 46 ± 8 mL·kg−1·min−1) performed a graded incremental exercise test, 2 familiarisation trials, and 4 experimental trials. Trials consisted of cycling to volitional exhaustion at 100% Wpeak (TLIM) 60 min after ingesting a solution containing either (i) 0.3 g·kg−1 body mass sodium bicarbonate (BIC), (ii) 5 mg·kg−1 body mass caffeine plus 0.1 g·kg−1 body mass sodium chloride (CAF), (iii) 0.3 g·kg−1 body mass sodium bicarbonate plus 5 mg·kg−1 body mass caffeine (BIC-CAF), or (iv) 0.1 g·kg−1 body mass sodium chloride (PLA). Experimental solutions were administered double-blind. Pre-exercise, at the end of exercise, and 5-min postexercise blood pH, base excess, and bicarbonate ion concentration ([HCO3−]) were significantly elevated for BIC and BIC-CAF compared with CAF and PLA. TLIM (median; interquartile range) was significantly greater for CAF (399; 350–415 s; P = 0.039; r = 0.6) and BIC-CAF (367; 333–402 s; P = 0.028; r = 0.6) compared with BIC (313: 284–448 s) although not compared with PLA (358; 290–433 s; P = 0.249, r = 0.3 and P = 0.099 and r = 0.5, respectively). There were no differences between PLA and BIC (P = 0.196; r = 0.4) or between CAF and BIC-CAF (P = 0.753; r = 0.1). Relatively large inter- and intra-individual variation was observed when comparing treatments and therefore an individual approach to supplementation appears warranted.


2010 ◽  
Vol 20 (4) ◽  
pp. 307-321 ◽  
Author(s):  
Sonya L. Cameron ◽  
Rebecca T. McLay-Cooke ◽  
Rachel C. Brown ◽  
Andrew R. Gray ◽  
Kirsty A. Fairbairn

Purpose:This study investigated the effect of ingesting 0.3 g/kg body weight (BW) of sodium bicarbonate (NaHCO3) on physiological responses, gastrointestinal (GI) tolerability, and sprint performance in elite rugby union players.Methods:Twenty-five male rugby players, age 21.6 (2.6) yr, participated in a randomized, double-blind, placebo-controlled crossover trial. Sixty-five minutes after consuming 0.3 g/kg BW of either NaHCO3 or placebo, participants completed a 25-min warm-up followed by 9 min of high-intensity rugby-specific training followed by a rugby-specific repeated-sprint test (RSRST). Whole-blood samples were collected to determine lactate and bicarbonate concentrations and pH at baseline, after supplement ingestion, and immediately after the RSRST. Acute GI discomfort was assessed by questionnaire throughout the trials, and chronic GI discomfort was assessed during the 24 hr postingestion.Results:After supplement ingestion and immediately after the RSRST, blood HCO3 − concentration and pH were higher for the NaHCO3 condition than for the placebo condition (p < .001). After the RSRST, blood lactate concentrations were significantly higher for the NaHCO3 than for the placebo condition (p < .001). There was no difference in performance on the RSRST between the 2 conditions. The incidence of belching, stomachache, diarrhea, stomach bloating, and nausea was higher after ingestion of NaHCO3 than with placebo (all p < .050). The severity of stomach cramps, belching, stomachache, bowel urgency, diarrhea, vomiting, stomach bloating, and flatulence was rated worse after ingestion of NaHCO3 than with placebo (p < .050).Conclusions:NaHCO3 supplementation increased blood HCO3 − concentration and attenuated the decline in blood pH compared with placebo during high-intensity exercise in well-trained rugby players but did not significantly improve exercise performance. The higher incidence and greater severity of GI symptoms after ingestion of NaHCO3 may negatively affect physical performance, and the authors strongly recommend testing this supplement during training before use in competitive situations.


2014 ◽  
Vol 9 (4) ◽  
pp. 627-632 ◽  
Author(s):  
Bryan Saunders ◽  
Craig Sale ◽  
Roger C. Harris ◽  
Caroline Sunderland

Purpose:To determine whether gastrointestinal (GI) distress affects the ergogenicity of sodium bicarbonate and whether the degree of alkalemia or other metabolic responses is different between individuals who improve exercise capacity and those who do not.Methods:Twenty-one men completed 2 cycling-capacity tests at 110% of maximum power output. Participants were supplemented with 0.3 g/kg body mass of either placebo (maltodextrin) or sodium bicarbonate (SB). Blood pH, bicarbonate, base excess, and lactate were determined at baseline, preexercise, immediately postexercise, and 5 min postexercise.Results:SB supplementation did not significantly increase total work done (TWD; P = .16, 46.8 · 9.1 vs 45.6 · 8.4 kJ, d = 0.14), although magnitude-based inferences suggested a 63% likelihood of a positive effect. When data were analyzed without 4 participants who experienced GI discomfort, TWD (P = .01) was significantly improved with SB. Immediately postexercise blood lactate was higher in SB for the individuals who improved but not for those who did not. There were also differences in the preexercise-to-postexercise change in blood pH, bicarbonate, and base excess between individuals who improved and those who did not.Conclusions:SB improved high-intensity-cycling capacity but only with the exclusion of participants experiencing GI discomfort. Differences in blood responses suggest that SB may not be beneficial to all individuals. Magnitude-based inferences suggested that the exercise effects are unlikely to be negative; therefore, individuals should determine whether they respond well to SB supplementation before competition.


2007 ◽  
Vol 17 (2) ◽  
pp. 206-217 ◽  
Author(s):  
Guilherme Giannini Artioli ◽  
Bruno Gualano ◽  
Desiré Ferreira Coelho ◽  
Fabiana Braga Benatti ◽  
Alessandra Whyte Gailey ◽  
...  

The aim of the present study was to investigate whether pre exercise sodium-bicarbonate ingestion improves judo-related performance. The study used 2 different protocols to evaluate performance: 3 bouts of a specific judo test (n = 9) and 4 bouts of the Wingate test for upper limbs (n = 14). In both protocols athletes ingested 0.3 g/kg of sodium bicarbonate or placebo 2 h before the tests. Blood samples were collected to determine lactate level, and levels of perceived exertion were measured throughout the trials. The study used a double-blind, counterbalanced, crossover design. Ingestion of sodium bicarbonate improved performance in Bouts 2 and 3 of Protocol 1 (P < 0.05), mean power in Bouts 3 and 4 of Protocol 2 (P < 0.05), and peak power in Bout 4 of Protocol 2 (P < 0.05). Ingestion of bicarbonate increased lactate concentration in Protocol 1 (P < 0.05) but not in Protocol 2. Ratings of perceived exertion did not differ between treatments. In conclusion, sodium bicarbonate improves judo-related performance and increases blood lactate concentration but has no effect on perceived exertion.


2010 ◽  
Vol 57 (2) ◽  
pp. 59-66 ◽  
Author(s):  
Michael Whitcomb ◽  
Melissa Drum ◽  
Al Reader ◽  
John Nusstein ◽  
Mike Beck

Abstract The authors, using a crossover design, randomly administered, in a double-blind manner, inferior alveolar nerve (IAN) blocks using a buffered 2% lidocaine with 1 : 100,000 epinephrine/sodium bicarbonate formulation and an unbuffered 2% lidocaine with 1 : 100,000 epinephrine formulation at 2 separate appointments spaced at least 1 week apart. An electric pulp tester was used in 4-minute cycles for 60 minutes to test for anesthesia of the first and second molars, premolars, and lateral and central incisors. Anesthesia was considered successful when 2 consecutive 80 readings were obtained within 15 minutes, and the 80 reading was continuously sustained for 60 minutes. For the buffered 2% lidocaine with 1 : 100,000 epinephrine/sodium bicarbonate formulation, successful pulpal anesthesia ranged from 10–71%. For the unbuffered 2% lidocaine with 1 : 100,000 epinephrine formulation, successful pulpal anesthesia ranged from 10–72%. No significant differences between the 2 anesthetic formulations were noted. The buffered lidocaine formulation did not statistically result in faster onset of pulpal anesthesia or less pain during injection than did the unbuffered lidocaine formulation. We concluded that buffering a 2% lidocaine with 1 : 100,000 epinephrine with sodium bicarbonate, as was formulated in the current study, did not statistically increase anesthetic success, provide faster onset, or result in less pain of injection when compared with unbuffered 2% lidocaine with 1 : 100,000 epinephrine for an IAN block.


2021 ◽  
Author(s):  
Goutam Mondal ◽  
Yan-Hong Wang ◽  
Matthew Butawan ◽  
Richard J Bloomer ◽  
Ryan Yates

Methylliberine and theacrine are methylurates found in the leaves of various Coffea species and Camellia assamica var. kucha, respectively. We previously demonstrated that the methylxanthine caffeine increased theacrine oral bioavailability in humans. Consequently, we conducted a double-blind, placebo-controlled study pharmacokinetic study in humans administered methylliberine, theacrine, and caffeine to determine methylliberine pharmacokinetic interaction potential with either caffeine or theacrine. Subjects (n = 12) received an oral dose of either methylliberine (25 or 100 mg), caffeine (150 mg), methylliberine (100 mg) plus caffeine (150 mg), or methylliberine (100 mg) plus theacrine (50 mg) using a randomized, double-blind, crossover design. Blood samples were collected over 24 hours and analyzed for methylliberine, theacrine, and caffeine using UPLC-MS/MS. Methylliberine exhibited linear pharmacokinetics that were unaffected by co-administration of either caffeine or theacrine. However, methylliberine co-administration resulted in decreased oral clearance (41.9 +/- 19.5 vs. 17.1 +/- 7.80 L/hr) and increased half-life (7.2 +/- 5.6 versus 15 +/- 5.8 hrs) of caffeine. Methylliberine had no impact on caffeine maximum concentration (440 +/- 140 vs. 458 +/- 93.5 ng/mL) or oral volume of distribution (351 +/- 148 vs. 316 +/- 76.4 L). We previously demonstrated theacrine bioavailability was enhanced by caffeine, however, caffeine pharmacokinetics were unaffected by theacrine. Herein, we found that methylliberine altered caffeine pharmacokinetics without a reciprocal interaction, which suggests caffeine may interact uniquely with different methylurates. Understanding the mechanism(s) of interaction between methylxanthines and methylurates is of critical importance in light of the recent advent of dietary supplements containing both purine alkaloid classes.


2019 ◽  
Vol 25 (1) ◽  
pp. 40-44
Author(s):  
Cezar Augusto Souza Casarin ◽  
Rafael Ambrósio Battazza ◽  
Marco Aurélio Lamolha ◽  
Marcelo Martins Kalytczak ◽  
Fabiano Politti ◽  
...  

ABSTRACT Introduction: Although sodium bicarbonate (NaHCO3) supplementation has been shown to decrease fatigue and improve high-intensity exercise performance, the effects on maintenance of isometric contractions are not clear. Objective: To investigate the effect of NaHCO3 on the performance of individuals subjected to a fatigue protocol in an isometric exercise on the isokinetic dynamometer. Methods: Participants were 12 men in a randomized, double-blind, crossover, placebo-controlled trial. Sixteen minutes after the intake of 0.3 g/kg of body mass of NaHCO3 or placebo, the participants performed an isometric fatigue protocol of right knee extension exercises during eight minutes at 70% of maximum voluntary isometric contraction. The fatigue indicator was the time point at which torque was reduced to 50% of the initial value. The length of resistance was assessed by maintaining the task over 50% of the initial torque. Lactate/blood pH concentrations and rate of perceived exertion (RPE) and pain (RPP) indexes were analyzed. The RPE of the session was evaluated 30 minutes after the test. Results: Blood pH was higher in pre-protocol and in the fatigue indicator after NaHCO3 intake, as were the blood lactate concentrations in the fatigue indicator and at the end of the protocol (p<0.001). NaHCO3 supplementation increased the time to fatigue and lessened the rate of decline of isometric peak torque at the end of the protocol (p<0.001). RPE and RPP were smaller at the end of the protocol in the NaHCO3 condition, and the RPE of the session was diminished (p<0.001). Conclusion: NaHCO3 supplementation enhances steady isometric contraction performance and reduces the internal load. Level of Evidence II; Diagnostic studies - Investigation of an examination for diagnosis.


2013 ◽  
Vol 23 (5) ◽  
pp. 480-487 ◽  
Author(s):  
Ruth M. Hobson ◽  
Roger C. Harris ◽  
Dan Martin ◽  
Perry Smith ◽  
Ben Macklin ◽  
...  

Purpose:To examine the effect of beta-alanine only and beta-alanine with sodium bicarbonate supplementation on 2,000-m rowing performance.Methods:Twenty well-trained rowers (age 23 ± 4 y; height 1.85 ± 0.08 m; body mass 82.5 ± 8.9 kg) were assigned to either a placebo or beta-alanine (6.4 g·d−1 for 4 weeks) group. A 2,000-m rowing time trial (TT) was performed before supplementation (Baseline) and after 28 and 30 days of supplementation. The post supplementation trials involved supplementation with either maltodextrin or sodium bicarbonate in a double-blind, crossover design, creating four study conditions (placebo with maltodextrin; placebo with sodium bicarbonate; beta-alanine with maltodextrin; beta-alanine with sodium bicarbonate). Blood lactate, pH, bicarbonate, and base excess were measured pre-TT, immediately post-TT and at TT+5 min. Performance data were analyzed using magnitude based inferences.Results:Beta-alanine supplementation was very likely to be beneficial to 2,000-m rowing performance (6.4 ± 8.1 s effect compared with placebo), with the effect of sodium bicarbonate having a likely benefit (3.2 ± 8.8 s). There was a small (1.1 ± 5.6 s) but possibly beneficial additional effect when combining chronic beta-alanine supplementation with acute sodium bicarbonate supplementation compared with chronic beta-alanine supplementation alone. Sodium bicarbonate ingestion led to increases in plasma pH, base excess, bicarbonate, and lactate concentrations.Conclusions:Both chronic beta-alanine and acute sodium bicarbonate supplementation alone had positive effects on 2,000-m rowing performance. The addition of acute sodium bicarbonate to chronic beta-alanine supplementation may further enhance rowing performance.


2021 ◽  
Vol 99 (2) ◽  
Author(s):  
Takele Feyera ◽  
Sigrid J W Skovmose ◽  
Signe E Nielsen ◽  
Darya Vodolazska ◽  
Thomas S Bruun ◽  
...  

Abstract This study aimed to determine the optimal supply of lactation feed during the transition period to minimize farrowing duration (FD) and maximize colostrum yield (CY) and quality with the overall aim of reducing piglet mortality. A total of 48 sows were stratified for body weight and assigned to six levels of feed supply (1.8, 2.4, 3.1, 3.7, 4.3, and 5.0 kg/d) from day 108 of gestation until 24 h after the onset of farrowing. The number of total born, live-born, and stillborn piglets; birth time and birth weight of each piglet; and frequency of farrowing assistance (FA) was recorded, and blood samples were obtained from newborn piglets at birth. Live-born piglets were further weighed at 12 and 24 h after birth to record weight gain, which in turn was used to estimate intake and yield of colostrum. Colostrum samples were collected at 0, 12, 24, and 36 h after the onset of farrowing. FD was shortest (4.2 h) at intermediate (3.7 kg/d), longest (7.1 to 7.6 h) at low (1.8 and 2.4 kg/d), and intermediate (5.6 to 5.7 h) at high (4.3 and 5.0 kg/d) feed intake (P = 0.004; mean comparison). FA was lowest (0.7% to 0.8%) at intermediate feed intake (3.7 and 4.3 kg/d) and substantially elevated (4.3% to 4.7%) at both lower and higher feed intake (P = 0.01; mean comparison). The cubic contrast revealed 4.1 kg/d as the optimal feed intake to achieve the shortest FD and to minimize FA. Newborn piglets from second-parity sows were less vital than piglets from gilts as evaluated by blood biochemical variables immediately after birth. CY was greatest at 3.1 kg/d (P = 0.04), whereas the cubic contrast revealed 3.0 kg/d as the optimal feed intake to maximize CY. Concentrations of colostral components were affected by the diet, parity, and their interaction except for lactose concentrations. In conclusion, the study demonstrated the importance of proper feed level during the transition period on sow productivity. Moreover, this study estimated 4.1 and 3.0 kg/d as the optimal feed intake during the transition period to improve farrowing characteristic and CY, respectively, and these two feed intake levels supplied daily 38.8 MJ metabolizable energy (ME) and 23.9 g standardized ileal digestible (SID) lysine (3.0 kg/d) or 53.0 MJ ME and 32.7 g SID lysine (4.1 kg/d). The discrepancy of optimal feed intake for optimal farrowing and colostrum performance suggests that it may be advantageous to lower dietary lysine concentration in the diet fed prepartum.


Sign in / Sign up

Export Citation Format

Share Document