High-rise building analysis considering construction stages: floor structure stiffness influence over vertical element axial shortening

2021 ◽  
Author(s):  
Raina Boiadjieva

<p>The studies of building structures accounting construction stages considered the optimization of embedded materials both at the design stage and at the construction stage. Axial shortening of the vertical load-bearing elements under the effect of gravitational loads and due to the characteristics of the building materials is an important point of structural analysis of tall buildings that should be considered. The present study analyzes the influence of the floor structure stiffness and the vertical load-bearing element / floor structure connection over the axial shortening of walls and columns which affects the distribution of normal forces in them. A computational model of a building structure with simplified geometry and loads is considered to emphasize the impact of the stiffness of the floor structure. The results of the solution of several variants of calculation models are compared. Generalized conclusions are given in the end.</p>

2021 ◽  
Vol 95 (3) ◽  
pp. 59-67
Author(s):  
K. HOLSCHEMACHER ◽  
◽  
A.G. BULGAKOV ◽  
W. POLIENKO ◽  
◽  
...  

Textile concrete is an innovative composite material that has been the subject of intensive research since the beginning of the 90s of the last century. After the approval of the rules and regulations on its application to strengthen floor slabs, an important step was taken towards its entry into the building materials market. Questions regarding the reinforcement of rod-shaped load-bearing elements of building structures need additional research. Despite the great potential available, the method of tying load-bearing supports and columns is still not well understood. There is a need for research on a wide range of geometric parameters and the reinforcement systems used. The Institute of Reinforced Concrete of the Higher Technical School in Leipzig tested various samples of carbon-reinforced samples in a wide range of geometrical parameters. Their goal was to assess the effect on a possible increase in the bearing capacity of carbon-reinforced columns at a concentrated point load.


Author(s):  
Paul Mayencourt ◽  
John Ochsendorf ◽  
Caitlin Mueller

The large impact of building structures on the environment must be reduced to meet the global targets fixed by the Intergovernmental Panel on Climate Change. Standard building structures with constant prismatic cross-section have material inefficiencies of around 66% (and up to 75% in some cases) that need to be addressed. Structural shaping, a subfield of shape optimization, offers a pathway to reduce the impact of building materials on the environment. Shaping statically determinate structures such as simply supported beams is relatively straightforward, but offers few design options compared to statically indeterminate structures. However, no methods provide an efficient way for designers to shape these systems according to their design intent or efficiency goals. Based on plasticity theory, this paper presents a shaping methodology to explore the design space of shaped indeterminate frame structures. The methodology is implemented in three case studies.<br/> In all the case studies, the methodology allows for the exploration of material-efficient yet diverse designs of shaped indeterminate frame structures. The implementation of this methodology can promote the use of structural shaping by offering more agency to structural designers to create diverse and efficient structural systems.


2018 ◽  
Vol 33 ◽  
pp. 02042
Author(s):  
Mikhail Berlinov ◽  
Marina Berlinova ◽  
Alexandr Tvorogov

The analysis of the criterion of strength of concrete in structures of high-rise buildings under vibration and shock impacts is presented. The idea of an energy approach to ensuring the strength of concrete and the durability of building structures from reinforced concrete under the influence of shock impacts on the life of such structures is presented in a high-rise construction. A method for determining the strength and durability of concrete in load-bearing building structures made of reinforced concrete for irreversible thermodynamic processes has been developed. Dependences that determine the behavior of concrete in reinforced concrete structures of high stores on the load-bearing structures of a building under the influence of damped oscillations from the operation of air transport on the landing site are determined, taking into account the impact arising from its landing.


2016 ◽  
Vol 7 (1) ◽  
pp. 29-43
Author(s):  
G. Lámer

The study involves structures applicable in building structures. Present part I includes structures applicable in building structures. Building structures for this are classified according to functions. Two main groups can be distinguished: frameworks and building structures ensuring serviceability. Further subgroups can be distinguished within both main groups. Upon examining the structural frame it is clear that buildings can be well classified according to frameworks. The four-element-classification of vertical load-bearing structural elements, walls and pillars — wall frame, pillar frame, mixed frame and frames without walls and pillars — provide a rather simple classification. Considering the different construction technologies of walls and pillars, and frameworks differing from these provides a multi-element classification. Various subgroups can be distinguished based on the relationship between walls and pillars as well as ceilings within the individual groups.


2021 ◽  
Vol 1209 (1) ◽  
pp. 012004
Author(s):  
P Jaroš ◽  
M Vertal

Abstract Thermophysical parameters of building materials are required for calculating the complex heat and water transfer in building structures. It can be performed by modern simulation software such as Wufi, Delphin, Math, Comsol Multiphysics and other. This software is suitable for evaluation of water and heat transport in construction of historical buildings, because it can include the impact of water on material properties, driven rain, ground water, heat and water accumulation and other. The material properties of historical building materials are required for the use of this software. In Slovakia, the most used building material was sandstone. Sandstone from Kežmarok was chosen for this paper, which was used in the construction of historic buildings such as churches and town houses. The method of dynamic impulse transition by thermophysical tester RTB was used to determine the thermal properties of sandstone.


2020 ◽  
Vol 786 (11) ◽  
pp. 41-46
Author(s):  
V.V. STROKOVA ◽  
◽  
V.V. NELUBOVA ◽  
M.N. SIVALNEVA ◽  
M.D. RYKUNOVA ◽  
...  

The dynamic development of urbanization contributes to an increase in emissions of industrial waste, which is the cause dysfunction of the ecosystem balance and leads to the development of biological corrosion on building materials associated with the products of the vital activity of microorganisms. In this regard, it is necessary to assess the resistance of composites to predict the durability of building structures under conditions of biological influence of microorganisms. Binder systems of various compositions were studied: cementless nanostructured binders (NB) based on quartz sand and granodiorite, gypsum, Portland cement and alumina cement. The toxicity of binders was assessed by biotesting on living organisms – cladocerans Daphnia Magna – according to the criteria of the intensity of their growth and viability. As a result, the high environmental safety of NB is substantiated, and the ranking of the studied binders according to the degree of increase in their toxicity to test objects is presented. Fungal resistance was assessed by the ability of molds for growing and reproduction on the studied samples. It was found that the most active in terms of the development of binders were representatives of the genus Aspergillus, the intensity of growing of which in all variants did not decrease below 3 points. Gypsum and NB were especially vulnerable, where the degree of fouling repeatedly reached 5 points. Even the initially biostable cement, after the aging process, lost its stability at different extent. The obtained results indicate the need to increase the resistance of composites for various purposes under conditions of biocorrosion at the stage of design and updating of regulatory documents, including tests for fungal resistance in the list of mandatory.


2021 ◽  
Vol 11 (13) ◽  
pp. 6020
Author(s):  
Krzysztof Nepelski ◽  
Agnieszka Lal

Loess soils were created by the wind transporting particles with later or in parallel occurred protogenetic, syngenetic and epigenetic processes. As a result, various genetic processes affected loesses strength and deformability characteristics. The aim of the study is to estimate the main CPT parameters of loess subsoil in Lublin area according to divided facies. The subsoil in the area of the Nałęczowski Plateau, where Lublin is located, consists mainly of loess from aeolian and aeolian–diluvial facies, and in the deeper parts—from aeolian–alluvial facies. Most of the results obtained for the aeolian facies at the level of qc in the range from 4.5 to 8.0 MPa indicate that these soils are a good load-bearing substrate for building structures. Cone resistances mostly at the level of 1.5–4.0 MPa for the diluvial and alluvial facies confirm that these facies constitute less favorable foundation conditions. The reduced resistance results mainly from the increased water content in ground pores. It is especially the soils of the diluvial facies that provide unfavorable foundation conditions, as they occur near the surface. Genetic processes are a very important element that should be taken into account in engineering research.


2021 ◽  
Vol 11 (9) ◽  
pp. 4136
Author(s):  
Rosario Pecora

Oleo-pneumatic landing gear is a complex mechanical system conceived to efficiently absorb and dissipate an aircraft’s kinetic energy at touchdown, thus reducing the impact load and acceleration transmitted to the airframe. Due to its significant influence on ground loads, this system is generally designed in parallel with the main structural components of the aircraft, such as the fuselage and wings. Robust numerical models for simulating landing gear impact dynamics are essential from the preliminary design stage in order to properly assess aircraft configuration and structural arrangements. Finite element (FE) analysis is a viable solution for supporting the design. However, regarding the oleo-pneumatic struts, FE-based simulation may become unpractical, since detailed models are required to obtain reliable results. Moreover, FE models could not be very versatile for accommodating the many design updates that usually occur at the beginning of the landing gear project or during the layout optimization process. In this work, a numerical method for simulating oleo-pneumatic landing gear drop dynamics is presented. To effectively support both the preliminary and advanced design of landing gear units, the proposed simulation approach rationally balances the level of sophistication of the adopted model with the need for accurate results. Although based on a formulation assuming only four state variables for the description of landing gear dynamics, the approach successfully accounts for all the relevant forces that arise during the drop and their influence on landing gear motion. A set of intercommunicating routines was implemented in MATLAB® environment to integrate the dynamic impact equations, starting from user-defined initial conditions and general parameters related to the geometric and structural configuration of the landing gear. The tool was then used to simulate a drop test of a reference landing gear, and the obtained results were successfully validated against available experimental data.


2021 ◽  
Vol 13 (2) ◽  
pp. 762
Author(s):  
Liu Tian ◽  
Yongcai Li ◽  
Jun Lu ◽  
Jue Wang

High population density, dense high-rise buildings, and impervious pavements increase the vulnerability of cities, which aggravate the urban climate environment characterized by the urban heat island (UHI) effect. Cities in China provide unique information on the UHI phenomenon because they have experienced rapid urbanization and dramatic economic development, which have had a great influence on the climate in recent decades. This paper provides a review of recent research on the methods and impacts of UHI on building energy consumption, and the practical techniques that can be used to mitigate the adverse effects of UHI in China. The impact of UHI on building energy consumption depends largely on the local microclimate, the urban area features where the building is located, and the type and characteristics of the building. In the urban areas dominated by air conditioning, UHI could result in an approximately 10–16% increase in cooling energy consumption. Besides, the potential negative effects of UHI can be prevented from China in many ways, such as urban greening, cool material, water bodies, urban ventilation, etc. These strategies could have a substantial impact on the overall urban thermal environment if they can be used in the project design stage of urban planning and implemented on a large scale. Therefore, this study is useful to deepen the understanding of the physical mechanisms of UHI and provide practical approaches to fight the UHI for the urban planners, public health officials, and city decision-makers in China.


Sign in / Sign up

Export Citation Format

Share Document