scholarly journals Protective Effects of Flavonoid Pomiferin on Heart Ischemia-Reperfusion

2007 ◽  
Vol 76 (3) ◽  
pp. 363-370
Author(s):  
J. Nečas ◽  
L. Bartošíková ◽  
T. Florian ◽  
J. Klusáková ◽  
V. Suchý ◽  
...  

The objective of the present 15-day study was to evaluate the cardioprotective potential of flavonoid pomiferin isolated from the infructences of Maclura pomifera, Moraceae, against ischemia-reperfusion induced injury in rat hearts as a model of antioxidant-based composite therapy. Studies were performed with isolated, modifi ed Langendorff-perfused rat hearts and ischemia of heart was initiated by stopping the coronary flow for 30 min, followed by 60 min of reperfusion (14 ml min-1). Wistar rats were divided into three groups. The treated group received pomiferin (5 mg/kg/day in 0.5% Avicel); the placebo group received only 0.5% Avicel; the intact group was left without any applications. Biochemical indicators of oxidative damage, lipid peroxidation product malondialdehyde, antioxidant enzymes (superoxide dismutase, glutathione peroxidase, total antioxidant activity in serum and myocardium has been evaluated. We also examined the effect of pomiferin on cardiac function (left ventricular end-diastolic pressure, left ventricular pressure, peak positive +dP/dt (rate of pressure development) after ischemia and reperfusion. Our results demonstrate that pomiferin attenuates the myocardial dysfunction provoked by ischemiareperfusion. This was confirmed by the increase in both the antioxidant enzyme values and the total antioxidant activity. The cardio-protection provided by pomiferin treatment results from the suppression of oxidative stress and correlates with the improved ventricular function.

Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Xinglin Tan ◽  
Stephen L Tilley ◽  
Thomas Krahn ◽  
Bunyen Teng ◽  
S. J Mustafa ◽  
...  

Endogenous adenosine is an important ligand trigger for the cardioprotective effects of postconditioning (PostCon). To assess the hypothesis that A 2B adenosine receptor (A 2B AR) activation contributes to PostCon-induced protection, global ischemia-reperfusion was performed with and without PostCon or the selective A 2B agonist, BAY 60 – 6583 (BAY), in isolated wild-type (WT) and A 2B AR knockout (A 2B KO) mouse hearts. In WT hearts, PostCon improved post-ischemic recovery of left ventricular developed pressure (LVDP) to 63.3±1.6 % of pre-ischemic baseline vs. 49.9±1.6 % in non-PostCon controls (CTL), lowered end diastolic pressure (EDP) to 15.8±1.5 mmHg vs. 27.9±1.6 mmHg in CTL, and reduced coronary efflux of cardiac troponin I (cTnI) to 2507±359 ng/g heart weight vs. 4693±343 ng/g in CTL (n=12 both groups, p <0.05 each comparison). Treatment with BAY in the first two min of reperfusion mimicked beneficial effects of PostCon in WT hearts (LVDP: 64.7±2.0 % baseline, EDP: 16.2±2.0 mmHg, cTnI: 3311±366; n=13, not significant compared to respective PostCon values). Real-time PCR confirmed absence of A 2B AR in A 2B KO hearts and demonstrated no changes in expression of other adenosine receptor subtypes compared with WT hearts. In A 2B KO hearts, neither PostCon nor BAY improved recovery of LVDP (50.8±1.6 % baseline for CTL vs. 54.5±1.7 % with PostCon vs. 53.0±1.4 with BAY; n=6 each group), and neither affected EDP or release of cTnI. During reperfusion, both PostCon and BAY increased survival kinase signaling through Akt and ERK1/2 phosphorylation in WT but not A 2B KO hearts. In non-ischemic WT hearts, Akt and ERK1/2 phosphorylation was increased by both BAY treatment and application of the PostCon stimulus. These data demonstrate that the protective effects of PostCon are attenuated by targeted deletion of A 2B AR and are mimicked by selective A 2B AR activation, suggesting A 2B AR activation is an important trigger leading to PostCon-induced myocardial protection.


2005 ◽  
Vol 83 (2) ◽  
pp. 166-173 ◽  
Author(s):  
Marie-Josée Dumoulin ◽  
Albert Adam ◽  
John Burnett ◽  
Denise Heublein ◽  
Nobuharu Yamaguchi ◽  
...  

The objective of the present study was to assess the cardioprotective effect of dual NEP–ACE inhibition in relation to endogenous cardiac bradykinin (BK), its active metabolite des-Arg9-BK, endogenous brain natriuretic peptides (BNP), and cGMP. Rats were treated with the dual metallopeptidase inhibitor, omapatrilat, or the ACE inhibitor, ramipril, for 7 d (1 mg·kg–1·d–1). Hearts were then isolated and subjected to a zero-flow ischemia and reperfusion (except controls), in the absence or presence of either a B2-receptor antagonist (Hoe-140), a B1-receptor antagonist (Lys-Leu8-des-Arg9-BK), or the GC-A/GC-B-receptor antagonist (HS-142-1). Chronic omapatrilat and ramipril increased the amount of endogenous BK collected upon reperfusion, but only ramipril increased that of des-Arg9-BK. Only omapatrilat increased both peak BNP and peak cGMP upon reperfusion, those increases being blocked by Hoe-140. Chronic omapatrilat (but not ramipril) decreased the total noradrenaline and lactate dehydrogenase release during the reperfusion period. Importantly, only omapatrilat improved the functional recovery of the ischemic reperfused heart, with a reduced left ventricular end-diastolic pressure, and improved developed left ventricular pressure. All cardio protective effects of omapatrilat were blocked by Hoe-140 and by HS-142-1, but not by the B1-receptor antagonist. In conclusion, a chronic treatment with a dual metallopeptidase inhibitor demonstrated a cardioprotective action not observed with an ACE inhibitor in a context of severe ischemia in rat isolated hearts, which was mediated by both endogenous BK and BNP.Key words: ACE inhibitors, omapatrilat, bradykinin, natriuretic peptide, ischemia, reperfusion.


2005 ◽  
Vol 99 (1) ◽  
pp. 230-236 ◽  
Author(s):  
Hyosook Hwang ◽  
Peter J. Reiser ◽  
George E. Billman

Potential protective effects of aerobic exercise training on the myocardium, before an ischemic event, are not completely understood. The purpose of the study was to investigate the effects of exercise training on contractile function after ischemia-reperfusion (Langendorff preparation with 15-min global ischemia/30-min reperfusion). Trabeculae were isolated from the left ventricles of both sedentary control and 10- to 12-wk treadmill exercise-trained rats. The maximal normalized isometric force (force/cross-sectional area; Po/CSA) and shortening velocity ( Vo) in isolated, skinned ventricular trabeculae were measured using the slack test. Ischemia-reperfusion induced significant contractile dysfunction in hearts from both sedentary and trained animals; left ventricular developed pressure (LVDP) and maximal rates of pressure development and relaxation (±dP/d tmax) decreased, whereas end-diastolic pressure (EDP) increased. However, this dysfunction (as expressed as percent change from the last 5 min before ischemia) was attenuated in trained myocardium [LVDP: sedentary −60.8 ± 6.4% (32.0 ± 5.5 mmHg) vs. trained −15.6 ± 8.6% (64.9 ± 6.6 mmHg); +dP/d tmax: sedentary −54.1 ± 4.7% (1,058.7 ± 124.2 mmHg/s) vs. trained −16.7 ± 8.4% (1,931.9 ± 188.3 mmHg/s); −dP/d tmax: sedentary −44.4 ± 2.5% (−829.3 ± 52.0 mmHg/s) vs. trained −17.9 ± 7.2% (−1,341.3 ± 142.8 mmHg/s); EDP: sedentary 539.5 ± 147.6%; (41.3 ± 6.0 mmHg) vs. trained 71.6 ± 30.6%; 11.4 ± 1.2 mmHg]. There was an average 26% increase in Po/CSA in trained trabeculae compared with sedentary controls, and this increase was not affected by ischemia-reperfusion. Ischemia-reperfusion reduced V0 by 39% in both control and trained trabeculae. The relative amount of the β-isoform of myosin heavy chain (MHC-β) was twofold greater in trained trabeculae as well as in the ventricular free walls. Despite a possible increase in the economy in the trained heart, presumed from a greater amount of MHC-β, ischemia-reperfusion reduced Vo, to a similar extent in both control and trained animals. Nevertheless, the trained myocardium appears to have a greater maximum force-generating ability that may, at least partially, compensate for reduced contractile function induced by a brief period of ischemia.


Antioxidants ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 679
Author(s):  
Chen-Yen Chien ◽  
Ting-Jui Wen ◽  
Yu-Hsiuan Cheng ◽  
Yi-Ting Tsai ◽  
Chih-Yao Chiang ◽  
...  

Diabetes exacerbates myocardial ischemia/reperfusion (IR) injury by incompletely understood mechanisms. We explored whether diabetes diminished BAG3/Bcl-2/Nrf-2/HO-1-mediated cardioprotection and overproduced oxidative stress contributing to exaggerated IR injury. Streptozotocin-induced diabetes enhanced hyperglycemia, cardiac NADPH oxidase p22/p67 expression, malondialdehyde amount and leukocyte infiltration, altered the mesenteric expression of 4-HNE, CaSR, p-eNOS and BAG3 and impaired microvascular reactivity to the vasoconstrictor/vasodilator by a wire myography. In response to myocardial IR, diabetes further depressed BAG3/Bcl-2/Nrf-2/HO-1 expression, increased cleaved-caspase 3/poly(ADP-ribose) polymerase (PARP)/TUNEL-mediated apoptosis and exacerbated IR-induced left ventricular dysfunction characterized by further depressed microcirculation, heart rate, left ventricular systolic pressure and peak rate of pressure increase/decrease (±dp/dt) and elevated left ventricular end-diastolic pressure (LVEDP) and Evans blue-2,3,5-triphenyltetrazolium chloride-stained infarct size in diabetic hearts. Our results implicated diabetes exacerbated IR-induced myocardial dysfunction through downregulated BAG3/Bcl-2/Nrf-2/HO-1 expression, increased p22/p67/caspase 3/PARP/apoptosis-mediated oxidative injury and impaired microvascular reactivity.


2007 ◽  
Vol 85 (5) ◽  
pp. 483-496 ◽  
Author(s):  
A.E. Consolini ◽  
M.I. Ragone ◽  
P. Conforti ◽  
M.G. Volonté

The role of the mitochondrial Na/Ca-exchanger (mNCX) in hearts exposed to ischemia–reperfusion (I/R) and pretreated with cardioplegia (CPG) was studied from a mechano-calorimetric approach. No-flow ischemia (ISCH) and reperfusion (REP) were developed in isolated rat hearts pretreated with 10 µmol/L clonazepam (CLZP), an inhibitor of the mNCX, and (or) a high K+ – low Ca2+ solution (CPG). Left ventricular end diastolic pressure (LVEDP), pressure development during beats (P), and the steady heat release (Ht) were continuously measured and muscle contents of ATP and PCr were analyzed at the end of REP. During REP, Ht increased more than P, reducing muscle economy (P/Ht) and the ATP content. CPG induced an increase in P recovery during REP (to 90% ± 10% of preISCH) with respect to nonpretreated hearts (control, C, to 64% ± 10%, p < 0.05). In contrast, CLZP reduced P recovery of CPG-hearts (50% ± 6.4%, p < 0.05) and increased LVEDP in C hearts. To evaluate effects on sarcoplasmic reticulum (SR) function, ischemic hearts were reperfused with 10 mmol/L caffeine –36 mmol/L Na (C – caff – low Na). It increased LVEDP, which afterwards slowly relaxed, whereas Ht increased (by about 6.5 mW/g). CLZP sped up the relaxation with higher ΔHt, C – caff – low Na produced higher contracture and lower Ht in perfused than in ischemic hearts. Values of ΔHt were compared with reported fluxes of Ca2+-transporters, suggesting that mitochondria may be in part responsible for the ΔHt during C – caff – low Na REP. Results suggest that ISCH–REP reduced the SR store for the recovery of contractility, but induced Ca2+ movement from the mitochondria to the SR stores. Also, mitochondria and SR are able to remove cytosolic Ca2+ during overloads (as under caffeine), through the mNCX and the uniporter. CPG increases Ca2+ cycling from mitochondria to the SR, which contributes to the higher recovery of P. In contrast, CLZP produces a deleterious effect on ISCH–REP associated with higher heat release and reduced resynthesis of high energy phosphates, which suggests the induction of mitochondrial Ca cycling and uncoupling.


2008 ◽  
pp. S61-S66
Author(s):  
P Kaplán ◽  
M Matejovičová ◽  
P Herijgers ◽  
W Flameng

Reactive oxygen species (ROS) have been implicated in the mechanism of postischemic contractile dysfunction, known as myocardial stunning. In this study, we examined protective effects of antioxidant enzymes, superoxide dismutase (SOD) and catalase, against ischemia/reperfusion-induced cardiac dysfunction and inhibition of Na+,K+-ATPase activity. Isolated Langendorff-perfused rabbit hearts were subjected to 15 min of global normothermic ischemia followed by 10 min reperfusion. The hearts treated with SOD plus catalase did not show significant recovery of left ventricular (LV) end-diastolic pressure compared with untreated ischemic reperfused hearts. Treatment with antioxidants had no protective effects on developed LV pressure or its maximal positive and negative first derivatives (+/-LVdP/dt). Myocardial stunning was accompanied by significant loss in sarcolemmal Na+,K+-ATPase activity and thiol group content. Inhibition of enzyme activity and oxidation of SH groups were not prevented by antioxidant enzymes. These results suggest that administration of SOD and catalase in perfusate do not protect significantly against cardiac dysfunction in stunned rabbit myocardium.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Maciej K. Janik ◽  
Wiktor Smyk ◽  
Beata Kruk ◽  
Benedykt Szczepankiewicz ◽  
Barbara Górnicka ◽  
...  

AbstractThe clinical picture of autoimmune hepatitis (AIH) varies markedly between patients, potentially due to genetic modifiers. The aim of this study was to evaluate genetic variants previously associated with fatty liver as potential modulators of the AIH phenotype. The study cohort comprised 313 non-transplanted adults with AIH. In all patients, the MARC1 (rs2642438), HSD17B13 (rs72613567), PNPLA3 (rs738409), TM6SF2 (rs58542926), and MBOAT7 (rs641738) variants were genotyped using TaqMan assays. Mitochondrial damage markers in serum were analyzed in relation to the MARC1 variant. Carriers of the protective MARC1 allele had lower ALT and AST (both P < 0.05). In patients treated for AIH for ≥ 6 months, MARC1 correlated with reduced AST, ALP, GGT (all P ≤ 0.01), and lower APRI (P = 0.02). Patients carrying the protective MARC1 genotype had higher total antioxidant activity (P < 0.01) and catalase levels (P = 0.02) in serum. The PNPLA3 risk variant was associated with higher MELD (P = 0.02) in treated patients, whereas MBOAT7 increased the odds for liver cancer (OR = 3.71). None of the variants modulated the risk of death or transplantation. In conclusion, the MARC1 polymorphism has protective effects in AIH. Genotyping of MARC1, PNPLA3, and MBOAT7 polymorphisms might help to stratify patients with AIH.


HortScience ◽  
2000 ◽  
Vol 35 (4) ◽  
pp. 568D-568c ◽  
Author(s):  
F.M. Woods ◽  
C. Mosjidis ◽  
D. Hilmerick ◽  
R.C Ebel ◽  
B. Wilkins

Strawberry fruit (Fragaria ×ananassa `Chandler') were evaluated at five different stages of growth and development for changes in the senescence process in fruit tissues. Levels of total antioxidant activity, hydrogen peroxide (H2O2), lipid peroxidation product, malondialdehyde, and ethylene production were determined. Total antioxidant activity (TAA) was measured in terms of in situ antioxidants to scavenge the ABTS.superscript +superscript radical cation. With the progression of ripening and senescence, there was a significant decline in TAA that coincided with increased concentration of H2O2, lipid peroxidation and increased production of ethylene. Our results illustrate that the senescence process in strawberry fruit is associated with the decline of TAA and the potential initiation and accumulation of reactive oxygen species. These results are additionally discussed in terms of potential processes associated with abiotic and biotic environmental stresses. Moreover, although strawberry fruit are typically classified as nonclimacteric, this study illustrates that the free radical mediated senescence process is similar to that of climacteric fruits.


2009 ◽  
Vol 296 (5) ◽  
pp. H1296-H1304 ◽  
Author(s):  
Xiyuan Lu ◽  
Hong Liu ◽  
Lianguo Wang ◽  
Saul Schaefer

Anesthetic preconditioning (APC), defined as brief exposure to inhalational anesthetics before cardiac ischemia-reperfusion (I/R), limits injury in both animal models and in humans. APC can result in the production of reactive oxygen species (ROS), and prior work has shown that APC can modify activation of NF-κB during I/R, with consequent reduction in the expression of inflammatory mediators. However, the role of NF-κB activation before I/R is unknown. Therefore, these experiments tested the hypothesis that APC-induced ROS results in activation of NF-κB before I/R, with consequent increased expression of antiapoptotic proteins such as Bcl-2 and decreased apoptosis. Experiments utilized an established perfused heart rat model of sevoflurane APC and I/R. The role of NF-κB was defined by a novel method of transient inhibition of the regulatory kinase IKK using the reversible inhibitor SC-514. In addition to functional measures of left ventricular developed and end-diastolic pressure, phosphorylation of IκBα and activation of NF-κB were measured along with cytosolic protein content of Bcl-2, release of cytochrome c, and degradation of caspase-3. APC resulted in ROS-dependent phosphorylation of IκBα and activation of NF-κB before I/R. APC also increased the expression of Bcl-2 before I/R. In addition to functional protection following I/R, APC resulted in lower release of cytochrome c and caspase-3 degradation. These protective effects of APC were abolished by transient inhibition of IκBα phosphorylation and NF-κB activation by SC-514 followed by washout. ROS-dependent activation of NF-κB by APC before I/R is a critical element in the protective effect of APC. APC reduces apoptosis and functional impairment by increasing Bcl-2 expression before I/R. Interventions that increase NF-κB activation before I/R should protect hearts from I/R injury.


Membranes ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 836
Author(s):  
Andrea Dörner ◽  
Oleg Lynetskiy ◽  
Gerhild Euler ◽  
Ulf Landmesser ◽  
Klaus-Dieter Schlüter ◽  
...  

Reperfusion is the only feasible therapy following myocardial infarction, but reperfusion has been shown to damage mitochondrial function and disrupt energy production in the heart. Adenine nucleotide translocase 1 (ANT1) facilitates the transfer of ADP/ATP across the inner mitochondrial membrane; therefore, we tested whether ANT1 exerts protective effects on mitochondrial function during ischemia/reperfusion (I/R). The hearts of wild-type (WT) and transgenic ANT1-overexpressing (ANT1-TG) rats were exposed to I/R injury using the standard Langendorff technique, after which mitochondrial function, hemodynamic parameters, infarct size, and components of the contractile apparatus were determined. ANT1-TG hearts expressed higher ANT protein levels, with reduced levels of oxidative 4-hydroxynonenal ANT modifications following I/R. ANT1-TG mitochondria isolated from I/R hearts displayed stable calcium retention capacity (CRC) and improved membrane potential stability compared with WT mitochondria. Mitochondria isolated from ANT1-TG hearts experienced less restricted oxygen consumption than WT mitochondria after I/R. Left ventricular diastolic pressure (Pdia) decreased in ANT1-TG hearts compared with WT hearts following I/R. Preserved diastolic function was accompanied by a decrease in the phospho-lamban (PLB)/sarcoplasmic reticulum calcium ATPase (SERCA2a) ratio in ANT1-TG hearts compared with that in WT hearts. In addition, the phosphorylated (P)-PLB/PLB ratio increased in ANT1-TG hearts after I/R but not in WT hearts, which indicated more effective calcium uptake into the sarcoplasmic reticulum in ANT1-TG hearts. In conclusion, ANT1-TG rat hearts coped more efficiently with I/R than WT rat hearts, which was reflected by preserved mitochondrial energy balance, diastolic function, and calcium dynamics after reperfusion.


Sign in / Sign up

Export Citation Format

Share Document