scholarly journals SYNTHESIS, CHARACTERIZATION, AND STUDY THE BIOLOGICAL ACTIVITY OF SOME SCHIFF'S BASES, AND 1,3 - OXAZEPINE COMPOUNDS DERIVED FROM SULFAMETHOXAZOLE DRUG

2021 ◽  
Vol 13 (1) ◽  
pp. 43-54
Author(s):  
Enaam F. Mousa1 ◽  

This study including synthesis of some new Schiff bases compounds [1‐6] from the reaction of Sulfamethoxazole drug with some aromatic aldehydes in classical Schiff base method then treatment Schiff bases with succinic anhydride to get oxazepines rings [7-11]These derivatives were characterized by melting point, FT‐IR, 1H NMR and mass spectra. Some of synthesized compounds were evaluated in vitro for their antibacterial activities against three kinds of pathogenic strains Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa by agar diffusion disk method, and against the fungal species (Candida). The results showed that some of these derivatives have good antibacterial activities compared to biological activity of parent drug.

2019 ◽  
Vol 35 (4) ◽  
pp. 1360-1367
Author(s):  
Rasim Farraj Muslim ◽  
Suheb Eaid Saleh

This research includes synthesis of new seventh-membered heterocyclic derivatives as 1,3-oxazepine-dione derived from azomethine compounds. Azomethine compounds R1-R4 were synthesized by the reaction of aromatic aldehydes with primary aromatic amines. The novel of 1,3-oxazepine-dione derivatives R5-R9 were obtained from the treatment of azomethine compounds with anhydrides. The synthesized compounds were checked by TLC technique, spectral methods (FT-IR, H1-NMR) and measurements of some its physical properties. The biological activity of the heterocyclic derivatives was investigated against bacteria and fungi in vitro.


Molbank ◽  
10.3390/m1189 ◽  
2021 ◽  
Vol 2021 (1) ◽  
pp. M1189
Author(s):  
Bayan Ahed Al-Hiyari ◽  
Ashok K. Shakya ◽  
Rajashri R. Naik ◽  
Sanaa Bardaweel

Three new Schiff bases of isoniazid were synthesized using microwave-assisted synthesis and conventional condensation with aromatic aldehydes. Synthesized compounds were characterized using elemental analysis, IR, NMR, and Mass spectroscopy. Synthesized compounds were evaluated for antiproliferative activity against MCF-7 cell line. The IC50 values were from 125 to 276 µM. The compounds were also evaluated for antibacterial activity against Staphylococcus aureus and Escherichia coli. Results showed that the synthesized compounds produce significant antibacterial activity in vitro. Inhibition of compounds ranged from 13 to 18 mm.


Author(s):  
Nedaa A. Hameed A. Rahim ◽  
Sumayah Saadi Abbas ◽  
Sahar B. Aljuboori ◽  
Ammar A Razzak Mahmood

Objective: Benzoxazole derivatives have antifungal, anticancer, antibacterial, and anticonvulsant function. Encouraged by this comment, we agreed to synthesize new Benzoxazole compounds connected to the bases of Schiff's. Methods: 2,4-diaminophenol (1) was prepared by the reaction of 2,4-dinitrophenol and sodium dithionate. Compound (1) reacted with either acetic acid to afford compound (2) or with formic acid to afford compound (3). The Schiff bases were preparation from the reaction condensing reaction of compound (2) or (3) and aromatic aldehydes or ketone; [p-nitrobenzaldehyde, p-hydroxybenzaldehyde, p-chlorobenzaldehyde, p-bromoacetophenone and terephthaldehyde]. Results: FTIR and 1H-NMR spectroscopy characterized all of the preparation compounds. The synthesized derivatives against (Gram positive bacteria GPB) (Bacillus subtilis) and two (Gram-negative bacteria GNB) (Klebsiella pneumoniae and Escherichia coli) and (one fungal species Candida albicans), have been evaluated to their antibacterial activity in vitro. all results showed which most of them have good antibacterial activity, while their antifungal activity revealed that compounds displayed slight antifungal activity. The synthesized Benzoxazole derivatives were docked using, glucosamine 6-phosphate synthase as a ligand. Conclusion: The antimicrobial activity indicates that compounds (4), (7) and (8) have more potent antibacterial activity than the compounds (5) and (6). Molecular docking study revealed that compounds (7) and (8), with bulky phenyl groups are essential to block the active centers of (GluN-6-Ps) amino acids synthase in the bacteria.


Molecules ◽  
2021 ◽  
Vol 26 (14) ◽  
pp. 4160
Author(s):  
Speranta Avram ◽  
Ana Maria Udrea ◽  
Diana Camelia Nuta ◽  
Carmen Limban ◽  
Adrian Cosmin Balea ◽  
...  

(1) Background: The research aims to find new treatments for neurodegenerative diseases, in particular, Alzheimer’s disease. (2) Methods: This article presents a bioinformatics and pathology study of new Schiff bases, (EZ)-N′-benzylidene-(2RS)-2-(6-chloro-9H-carbazol-2-yl)propanehydrazide derivatives, and aims to evaluate the drug-like, pharmacokinetic, pharmacodynamic and pharmacogenomic properties, as well as to predict the binding to therapeutic targets by applying bioinformatics, cheminformatics and computational pharmacological methods. (3) Results: We obtained these Schiff bases by condensing (2RS)-2-(6-chloro-9H-carbazol-2-yl)propanehydrazide with aromatic aldehydes, using the advantages of microwave irradiation. The newly synthesized compounds were characterized spectrally, using FT-IR and NMR spectroscopy, which confirmed their structure. Using bioinformatics tools, we noticed that all new compounds are drug-likeness features and may be proposed as potentially neuropsychiatric drugs (4) Conclusions: Using bioinformatics tools, we determined that the new compound 1e had a high potential to be used as a good candidate in neurodegenerative disorders treatment.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Jnyanaranjan Panda ◽  
V. Jagannath Patro ◽  
Biswa Mohan Sahoo ◽  
Jitendriya Mishra

Microwave-assisted organic synthesis, a green chemistry approach, is nowadays widely used in the drug synthesis. Microwave-assisted synthesis improves both throughput and turnaround time for medicinal chemists by offering the benefits of drastically reduced reaction times, increased yields, and pure products. Schiff bases are the important class of organic compounds due to their flexibility, and structural diversities due to the presence of azomethine group which is helpful for elucidating the mechanism of transformation and rasemination reaction in biological system. This novel compound could also act as valuable ligands for the development of new chemical entities. In the present work, some Schiff bases of Isatin derivatives was synthesized using microwave heating method. Schiff base of Isatin were synthesized by condensation of the keto group of Isatin with different aromatic primary amines. They were characterized by means of spectral data and subsequently subjected to the in vitro antibacterial activities against gram positive and gram negative strains of microbes. It was observed that the compound with electron withdrawing substituents exhibited good antibacterial activities against almost all the micro organisms.


Author(s):  
Ayodele Odularu ◽  
Peter Adewale Ajibade ◽  
Albert Bolhuis

Abstract Antibacterial activities can be improved using mixed ligands. Mixed ligands involved in this research are sodium sulfadiazine (Na-sfz) and dithiocarbamate (ai-dtc). One-pot synthesis was used to synthesize ligand of aniline dithiocarbamate (ai-dtc) and the corresponding coordination compounds of [VO(sfz)(ai-dtc)] and [Zn(sfz)(ai-dtc)]. Crystals of ai-dtc, which grew from the solution when refrigerated after five days, were diffracted with technique of single crystal x-ray crystallography to reveal the structure. Other characterization techniques involving physicochemical parameters, FT-IR, UV-Vis and NMR (1H NMR and 13C NMR) were carried out on ligands of ai-dtc, sfz and corresponding coordination compounds. Differences in results of FT-IR, UV-Vis and NMR between ligands and their respective metal ions confirmed the coordination. The in vitro antibacterial studies showed that the ligands (not the metal complexes) had modest activity against Gram negative bacteria: Staphylococcus aureus, whereas, the coordination compounds had modest activities against the Gram negative bacteria: Escherichia coli and Pseudomonas aeruginosa.


2020 ◽  
Vol 2020 ◽  
pp. 1-9 ◽  
Author(s):  
Fernando Carrasco ◽  
Wilfredo Hernández ◽  
Oscar Chupayo ◽  
Celedonio M. Álvarez ◽  
Sandra Oramas-Royo ◽  
...  

Four indole-3-carbaldehyde semicarbazone derivatives, 2-((5-bromo-1H-indol-3-yl)methylene)hydrazinecarboxamide (1), 2-((5-chloro-1H-indol-3-yl)methylene)hydrazinecarboxamide (2), 2-((5-methoxy-1H-indol-3-yl)methylene)hydrazinecarboxamide (3), and 2-((4-nitro-1H-indol-3-yl)methylene)hydrazinecarboxamide (4) were synthesized and characterized by ESI-MS and spectroscopic (FT-IR, 1H NMR, and 13C NMR) techniques. The two-dimensional NMR (in acetone-d6) spectral data revealed that the molecules 1 and 2 in solution are in the cisE isomeric form. This evidence is supported by DFT calculations at the B3LYP/6-311++G(d,p) level of theory where it was shown that the corresponding most stable conformers of the synthesized compounds have a cisE geometrical configuration, in both the gas and liquid (acetone and DMSO) phases. The in vitro antibacterial activity of compounds 1–4 was determined against Gram-positive (Staphylococcus aureus and Bacillus subtilis) and Gram-negative (Pseudomonas aeruginosa and Escherichia coli) bacteria. Among all the tested semicarbazones, 1 and 2 exhibited similar inhibitory activities against Staphylococcus aureus (MIC = 100 and 150 μg/mL, respectively) and Bacillus subtilis (MIC = 100 and 150 μg/mL, respectively). On the other hand, 3 and 4 were relatively less active against the tested bacterial strains compared with 1, 2, and tetracycline.


Author(s):  
Vijay J. Desale ◽  
Suraj N. Mali ◽  
Bapu R. Thorat ◽  
Ramesh S. Yamgar

Background: For the past several decades, we are remarking presence of the tuberculosis (TB) as the most common infectious disease leading mortality.and antimicrobial, etc. Objective: Hydrazone containing azometine group (-NHN=CH-) compounds has been reported for broad range of bioactivities such as antiplatelet, analgesic, antiinflammatory, anticonvulsant, antidepressant, antimalarial, vasodilator , antiviral and antimicrobial, etc. Method: For synthesis of our compounds (4a-4d) and (6a-6e), we have treated aromatic amines with methyl terephthalaldehydate in methanol giving us Schiff’s bases followed by reductive amination and further treatment with hydrazine hydrate to give acid hydrazides (4a-4d). These acid hydrazides were then treated with different aromatic aldehydes to yield hydrazones (6a-6d). All our synthesized compounds were subjected to FT-IR, NMR, and UV spectroscopic characterization. Results: Compounds (4a-4d) and (6a-6e) were found to have highly potent activity against Mycobacteria tuberculosis (Vaccine strain, H37 RV strains): ATCC No- 27294 (MIC:1.6-6.25 μg/mL) than standard anti-TB drugs. Our compounds exhibited good radical scavenging potentials(0-69.2%) as checked from DPPH protocol. All compounds also demonstrated good in-silico ADMET results. Conclusion: Our current study revealed promising in-vitro antituberculosis and antioxidant profiles of hydrazidehydrazone analogues.


Sign in / Sign up

Export Citation Format

Share Document