scholarly journals Design and Seismic Analysis of Ground Supported Water Tank

10.29007/gqkl ◽  
2018 ◽  
Author(s):  
Rahul Patel ◽  
Rishi Dave ◽  
Prutha Vyas

The ground supported tanks are firmly attached with ground and tank walls are subjected to hydrostatic as well as hydrodynamic pressure due to seismic forces. Base of the tank is subjected to weight of water and pressure of soil. Top of the tanks may be covered and is designed by using IS 3370:2009 Part (I, II) [4] and IS 1893:2007 (part-2) draft code[3] is used for the seismic analysis of the tank. This paper gives idea behind the design of liquid retaining structure (rectangular ground supported water tank) using working stress method. This paper includes the seismic analysis and design of the tank. The values are obtained with the help of spreadsheet program. Analysis of ground supported water tank has been carried out and relationship between tank capacity with moment capacity and reinforcement area, base shear with impulsive height and overturning moment with convective height is derived.

Seismic analysis of structure is employed to make the structure enable to resist the seismic forces and perform against the factors causing the failure of the structure under dynamic excitation. Among various response factors, the base shear and time period of buildings are predominant factors used in the analysis and design of the structure. The prime objective of the paper is to present an analytical study on non-linear seismic analysis of moment resisting framed buildings (as per Indian code IS1893 – 2016) to evaluate the base shear of different configurations of buildings according to different mode combination methods. The obtained results have been presented the comparative analysis of different combination methods. The paper also presents the evaluated results in the form of the time period values of the different buildings depending upon variation in its configuration. As a result, the responses of multistoried moment-resisting framed buildings have been evaluated for various models of considered buildings based on different mode combination methods, and the results of obtained responses have been analyzed in a comparative manner to understand the behaviour of buildings under various methods and configuration conditions. The work presented in the paper can support to develop better understanding of structural response and efficient designing of structures.


RC intze water tanks are constructed for storage and suppling of water through a certain height with adequate pressure of water distribution. Many overhead water tanks affected due to certainty like earthquake that can induce large lateral forces. So, there is a necessity to Understand and examine the behavior of intze tank supported on framing in context to different soil types under the seismic forces. This paper evaluates the experimental output of seismic analysis that compares shear and moments at base and also hydrodynamic pressure at wall and base slab for various seismic zone and different type of soil condition at different staging heights.


Author(s):  
Latha M S

Water tank is a container used for the storing of liquids and they are classified based on shape and location. The overhead tank is an important and it is very common public utility structure. The study predicts the analysis and design of the rectangular and circular overhead water tank using ETABS software. The water tank is modeled and analyzed by using dynamic analysis to resist lateral loads and design is made using working stress method manually. Dead load, live load, wind load and seismic loads are applied based on IS codes. The behavior of structure for the parameters like Story drift, displacement, stiffness, deflection, storey shear, base shear, area of steel and hoop tension for circular and rectangular water tank are studied and then comparison of the results is made between circular and rectangular overhead water tank. By this study we say that the circular water tank is suitable for larger capacity and rectangular is suitable for smaller capacity and it is economical for larger capacity.


Seismic analysis of structural systems with floor diaphragms has been a requisite in the recent past. The duty of a structural engineer is to be prudent about the behavior of every structural system adopted. Amongst the structural systems that are adopted world over, diaphragm with rigid and semi-rigid floor plate are adopted widely in the analysis. This research focuses on the backstay effect i.e. podium structural interaction with the tower area and consideration of retaining wall as increment of lateral stiffness as specified in latest tall building code IS6700:2016 for low and high rise structures. In the current study models were prepared with low to high rise storeys with rigid and flexible diaphragms considering backstay diaphragm placing tower at center and corner. The models were subjected to seismic forces; response spectrum along with the combination of the gravity loads. The structural responses like natural periods, base shear, displacement and inter storey drift were also studied.


RC intze water tanks are constructed for storage and suppling of water through a certain height with adequate pressure of water distribution. Many overhead water tanks affected due to certainty like earthquake that can induce large lateral forces. So, there is a necessity to Understand and examine the behavior of intze tank supported on framing in context to different soil types under the seismic forces. This paper evaluates the experimental output of seismic analysis that compares shear and moments at base for different seismic zone (II, III, IV, V) in different type of soil conditions.


Author(s):  
Mr. Suryakant Pandey

Abstract: In this day and age of urbanization, there is a strong need for a large-scale high-rise apartment building in every city but high-rise construction systems are extremely difficult to construct in any seismic region due to the intense and disruptive nature of seismic forces. Seismic forces have the highest risk of causing the most harm to high-rise buildings. To meet this need, the Civil Engineering industry is constantly developing new groundbreaking techniques. To solve this problem RCC or steel bracings are provided in high-rise buildings which help to the low down the effect of seismic and wind forces. The main objective of this paper is to locate an effective position and pattern of the RCC X-bracing system in the L- shape multi-storey building which is subjected to seismic forces. According to a previous reference paper, X-bracing produces better results than other bracing systems. Analysis the seven types of frame models are taken – (1) Normal L-shape building without bracing, (2) Xbracing are provided at the face of L-shape building, (3) X-bracing are provided alternative pattern at the face of L-shape building from bottom to top floor, (4) X- bracing are provided zig-zag pattern at the face of L-shape building, (5) X-bracing are provided at the corner of L-shape building, (6) X-bracing are provided alternative pattern at the corner of L-shape building from bottom to the top floor, (7) X-bracing are provided zig-zag pattern at the corner of L-shape building. Developed and evaluated by response spectrum analysis method (Linear dynamic analysis) as per IS 1893-2000 using STAAD PRO V8i. In the present work G+12 storey, the L-shape frame structure is analyzed by using X-bracing. It is analyzed and the results of the Following Parameters are taken - (1) Peak storey shear, (2) Base shear, (3) Nodal displacement, (4) Maximum bending moment, (5) Total quantity of steel in the whole structure, (6) Total volume of concrete in the whole structure are evaluated and compared. Keywords: RCC Bracing, Seismic Behavior, Seismic Analysis, Peak Storey Shear, Base shear, Nodal Displacements, Maximum Bending Moment, The Total Quantity of Steel, The Total Volume of Concrete


2021 ◽  
Vol 309 ◽  
pp. 01129
Author(s):  
Meera Arun ◽  
PVVSSR Krishna ◽  
T Srinivas

This paper consists of the work made on the study of seismic analysis on the multi-storied building by maintaining same floor area for all four different plan configurations. To make the analysis of these different four plan configurations, the modelling is done prior in the ETABS:2016 (Extended Three-Dimensional analysis of building system). An effort is made by providing all the load combinations and the performance of each plan is analysed individually and the comparison is made between symmetrically and asymmetrically plan configurations by keeping the floor area constant. After completion of the analysis, the comparison of storey displacement, base shear and storey drift is made and conclude that the symmetrical plans are superior when compared to asymmetrical plans in the view of the resistance against the seismic forces. Further the expansions joints are to be provided in the asymmetrical plans to ensure the safety against the seismic forces.


Author(s):  
Siddhnath Verma

Abstract: Water tanks are widely used for storage of drinking water. Water tanks and especially the elevated water tanks are structures of high importance which are considered as main lifeline elements that should be capable of keeping the expected performance i.e. operation during and after earthquakes. In this research paper, the analysis of the seismic behaviour of the elevated circular water tank by Indian standard code and Euro code is carried being carried out. The analysis is carried out on 35 cubic meter capacity elevated circular water tank in zone III and spectrum zone II and on three different soil conditions i.e. hard soil, medium soil and soft soil using ETABS software as per Indian standard code and European standard code. The results of base shear, base moment, storey displacement and storey drift are obtained from both codal provisions. Keywords: Elevated water tank, Seismic response, Etabs, Base shear, Base moment


Author(s):  
Asst. Prof A.V. Karvekar

Abstract: Water tanks are important public utility and industrial structure. The design and construction method used in reinforced concrete are influenced by the prevailing construction practices ,the physical property of the material and the climatic conditions water tanks are classified on the basis of their shape and position of structure storage reservoirs and overhead tank are used to store water all tanks are designed as crack free structure to eliminate any leakage . The principle objective of this project is to plan, analysis and design a circular overhead tank of 750lakh litters capacity. In this project all structural elements of circular water tank are analysed and design by using manually and ETAB software . this project giuesin brief ,The theory behind the design of liquid retaining structures (Elevated circular water tank ) using limit state method with reference to IS: 3370 (2009)and IS456:2000 The behaviour of structure for the parameters like story drift ,displacement stiffness ,deflection ,storey shear ,base shear , area of steel ,for circular water tank are studied on ETAB software and then comparison of the results is made between manually design By this study we say that the circular water tank analysis and design on ETAB software is more economical and safe than manually design of water tank. Keywords: Circular water tank , Seismic pressure, Population Forcasting, Limit state method ,working stress method , ETAB .


2008 ◽  
Vol 24 (3) ◽  
pp. 599-616 ◽  
Author(s):  
Ioannis P. Christovasilis ◽  
Andrew S. Whittaker

The seismic response of a conventional and an isolated vertical, cylindrical, Liquefied Natural Gas (LNG) tank is computed using a mechanical analog and a finite element code to judge the utility of the analog for preliminary design and of the effectiveness of seismic isolation. Data reported and statistically sorted include base shear, global overturning moment, and wave height in the tank. The results obtained from the two numerical models are in good agreement and demonstrate that the mechanical analog can be used with confidence for the preliminary analysis and design of conventional and isolated LNG tanks that have similar dimensions to the sample tank of this study. The base shear and overturning moment in the seismically isolated LNG tank are 10% to 15% of the values computed for the conventional tank; the wave heights are unaffected by the introduction of a seismic isolation system.


Sign in / Sign up

Export Citation Format

Share Document