scholarly journals Comparative Analysis & Design of Elevated Storage Reservoir (ESR) By Manually & Software

Author(s):  
Asst. Prof A.V. Karvekar

Abstract: Water tanks are important public utility and industrial structure. The design and construction method used in reinforced concrete are influenced by the prevailing construction practices ,the physical property of the material and the climatic conditions water tanks are classified on the basis of their shape and position of structure storage reservoirs and overhead tank are used to store water all tanks are designed as crack free structure to eliminate any leakage . The principle objective of this project is to plan, analysis and design a circular overhead tank of 750lakh litters capacity. In this project all structural elements of circular water tank are analysed and design by using manually and ETAB software . this project giuesin brief ,The theory behind the design of liquid retaining structures (Elevated circular water tank ) using limit state method with reference to IS: 3370 (2009)and IS456:2000 The behaviour of structure for the parameters like story drift ,displacement stiffness ,deflection ,storey shear ,base shear , area of steel ,for circular water tank are studied on ETAB software and then comparison of the results is made between manually design By this study we say that the circular water tank analysis and design on ETAB software is more economical and safe than manually design of water tank. Keywords: Circular water tank , Seismic pressure, Population Forcasting, Limit state method ,working stress method , ETAB .

Author(s):  
Latha M S

Water tank is a container used for the storing of liquids and they are classified based on shape and location. The overhead tank is an important and it is very common public utility structure. The study predicts the analysis and design of the rectangular and circular overhead water tank using ETABS software. The water tank is modeled and analyzed by using dynamic analysis to resist lateral loads and design is made using working stress method manually. Dead load, live load, wind load and seismic loads are applied based on IS codes. The behavior of structure for the parameters like Story drift, displacement, stiffness, deflection, storey shear, base shear, area of steel and hoop tension for circular and rectangular water tank are studied and then comparison of the results is made between circular and rectangular overhead water tank. By this study we say that the circular water tank is suitable for larger capacity and rectangular is suitable for smaller capacity and it is economical for larger capacity.


10.29007/gqkl ◽  
2018 ◽  
Author(s):  
Rahul Patel ◽  
Rishi Dave ◽  
Prutha Vyas

The ground supported tanks are firmly attached with ground and tank walls are subjected to hydrostatic as well as hydrodynamic pressure due to seismic forces. Base of the tank is subjected to weight of water and pressure of soil. Top of the tanks may be covered and is designed by using IS 3370:2009 Part (I, II) [4] and IS 1893:2007 (part-2) draft code[3] is used for the seismic analysis of the tank. This paper gives idea behind the design of liquid retaining structure (rectangular ground supported water tank) using working stress method. This paper includes the seismic analysis and design of the tank. The values are obtained with the help of spreadsheet program. Analysis of ground supported water tank has been carried out and relationship between tank capacity with moment capacity and reinforcement area, base shear with impulsive height and overturning moment with convective height is derived.


2021 ◽  
Vol 309 ◽  
pp. 01178
Author(s):  
Chandana Imadabathuni ◽  
Padala Sri Vardhan Goud ◽  
Nalla Ravi Kiran ◽  
Bathula Naveen

Water tank is a water storage structured built for long term use. These tanks were utilized for various uses like distribution of water, firefighting, agriculture, food industry, paper mills etc. It comes in handy when there is an intermittent supply of water or scarcity of water. Materials like concrete, pvc Galvanized Iron, fibre is used to manufacture tanks. Water is pumped through pipe by using pumps from a source. For distribution purpose water can be distributed either gravity or pump to reach individual with desired pressure and velocity. Volume is calculated based upon population and their usage and demand. Water demand varies hour to hour. For a continues supply water tanks are best suited. To meet water demand by public water tanks are to be constructed. Design and analysis are similar for any liquid present in water tank but is should be crack free to avoid leakage


2012 ◽  
Vol 19 (5) ◽  
pp. 903-914
Author(s):  
H.M. Lopes ◽  
C.S. Oliveira

Before establishing the priority settings for the reduction of seismic risk of water supply infrastructures, it is necessary to understand the dynamic behavior of elevated water tanks, which are components of those infrastructures. Among other information, the main frequencies of vibration of these structures must be estimated and the analytical models used in their analysis and design should reproduce the frequency values obtained by in-situ dynamic tests. This work focuses exclusively on reinforced concrete (RC) elevated water tanks (200–750 m^3 of water at heights of 30–40 m), which are very common structures in the water supply systems in Portugal since the mid XXth century. This type of structures can also be seen in many regions around the world. First, a nationwide survey was conducted to determine the most common typologies in the country in terms of structural layout. Second, an in-situ campaign using ambient vibration as input was performed for a group of selected structures to determine the main frequencies of vibration and to identify modal shapes and damping values. Third, a finite element model of several different typologies was developed using the water simply as a concentrated mass at the top; the elastic properties of the model of the structure including the foundation were calibrated, so that the frequencies of various mode shapes obtained by the analytical model would match the frequencies of the real structure. Finally, an expression was derived to estimate the fundamental frequency of a group of elevated water tank typologies based on the total mass at the top of the supporting structure, which include the water, the global lateral stiffness, and the height of the tank. This study, providing important information on the frequencies of vibration of RC-elevated water tanks, contributes in a definite way to the analysis and design of such water tanks.


Steel is one of the oldest construction materials and become a popular construction material in late seventeenth and eighteenth century. Environment friendly, rapid construction, easy availability and better fire rating are some of inherent advantages of steel construction. In current modern world, steel structure contributes a highest number of industrial buildings and sheds in the world building inventory. Pre-Engineered Building concept involves the steel building systems which are predesigned and prefabricated. This particular study includes the design of industrial storage structure which is situated in Mangalore. The actual structure is of pre-engineered structure of 90m width of three spans each span 30m width, and running 42m length and of eave height 6m with roof slope 1:10. The analysis and design is carried out by considering the live loads, dead loads, wind loads and earthquake load using relevant IS codes for the given PEB structure. The whole Pre-engineered building and Conventional steel structure is analyzed by using staad pro V8i SS6 software and designed by limit state method as per IS 800-2007. The moment, shear force and axial force decreases in PEB structure in various components as compared to CSB structure, due to increase in stiffness. Deformation decreases in PEB structure in various components as compared to CSB structure, due to increase in stiffness. Base shear and displacement decreases in PEB structure as compared to CSB structure, due to increase in stiffness. The percentage decrease in weight in PEB structure is 16.28% in comparison to CSB structure, hence cost of PEB structure reduces. Reduction in steel quantity reduces the dead load ultimately reduces the size of the foundation


Author(s):  
Saurabh Agarwal ◽  
Vishnu Sharma

This Paper deals with the layout and designing of Intze Tank, Circular Tank, and Rectangular Tank with stagingusing dynamic analysis. It concludes the low in cost layout inside which it includes the structural design, evaluation of shape which may be used for element estimation of this type of water tank i.e. Intze Tank, Circular Tank, Rectangular Tank and modeling is carried out by using finite element analysis base software STAAD PRO. Evaluation of tanks is about the analysis and design of sub structure and super structure. The layout of liquid retaining structure considering theentire economic system of the tank as an objective feature of the tank.Elevated water tanks are one of the most essential inside the daily requirement. This Paper is concerned with the overall performance in cost of water tank under seismic load as in keeping with IS 1893(part1):2002ZONE II. The consequences acquired from the analysis are as compared and the conclusions are drawn.


Author(s):  
Siddhnath Verma

Abstract: Water tanks are widely used for storage of drinking water. Water tanks and especially the elevated water tanks are structures of high importance which are considered as main lifeline elements that should be capable of keeping the expected performance i.e. operation during and after earthquakes. In this research paper, the analysis of the seismic behaviour of the elevated circular water tank by Indian standard code and Euro code is carried being carried out. The analysis is carried out on 35 cubic meter capacity elevated circular water tank in zone III and spectrum zone II and on three different soil conditions i.e. hard soil, medium soil and soft soil using ETABS software as per Indian standard code and European standard code. The results of base shear, base moment, storey displacement and storey drift are obtained from both codal provisions. Keywords: Elevated water tank, Seismic response, Etabs, Base shear, Base moment


2019 ◽  
Vol 7 (1) ◽  
pp. 11-16
Author(s):  
Abdulkhaleq K Mahmood ◽  
Ali A Kamal ◽  
Ako R Hama

The scarcity of safe drinking water is one of the problems faced by the majority of cities in the world. Kirkuk city is one of these cities, which suffer from a shortage of drinking water. People have adopted the use of different rooftop tanks to overcome this problem. This research focuses on studying the effect of storage time on the five main characteristics of drinking water, which include, acid index (pH), electrical conductivity (EC), total suspended solids (TSS), total dissolved solids (TDS), and turbidity (Tr). Three types of tanks were used predominantly (galvanized metal, plastic, and aluminum tanks). By analyzing the results, the characteristics of three samples of municipal source water obtained. Three samples were taken from each tank at different periods (4, 8, and 12 days). The results showed that the storage time affected the characteristics of drinking water. These characteristics differed from one tank to another. Metal tanks showed an increase in total dissolved solids, due to the evaporation process, even as plastic and aluminum tanks showed an increase in pH. The properties of all storage water tanks changed with times, but overall, the results were within the Iraqi limitation for drinking water. It was not easy to only depend on the results of this study to believe that any one type of water tank was better than the other, as the values of most of the variables studied had varied from one type to other. However, many studies have indicated a number of health risks, and most significantly with regard to plastic tanks, which are said to contain dangerous organic compounds that can be transferred to water. Metal tanks can cause zinc leakage, caused by a number of environmental factors at high levels. Aluminum tanks also can have an effect on the water in tanks.


Author(s):  
Osama Mahfooz ◽  
Mujtaba Memon ◽  
Asim Iftikhar

<span>A PLC is a digital computer used to automate electromechanical processes. This research is<span> based on automation of a water tank by using Siemens PLC. Automatic control of water tanks<span> can work continuously and can provide accurate quantity of water in less time. In such process<span> there is no need of labor so there is no human error. Without human error, the quality of product<span> is better and the cost of production would definitely decrease with no error in quantity required.<span> Water level sensing can be implemented in industrial plants, commercial use and even at home<br /><br class="Apple-interchange-newline" /></span></span></span></span></span></span>


2018 ◽  
Author(s):  
M. T. Nitsas ◽  
I. P. Koronaki ◽  
L. Prentza

The utilization of solar energy in thermal energy systems was and always be one of the most effective alternative to conventional energy resources. Energy efficiency is widely used as one of the most important parameters in order to evaluate and compare thermal systems including solar collectors. Nevertheless, the first law of thermodynamics is not solely capable of describing the quantitative and qualitative performance of such systems and thus exergy efficiency is used so as to introduce the systems’ quality. In this work, the performance of a flat plate solar collector using water based nanofluids of different nanoparticle types as a working fluid is analyzed theoretically under the climatic conditions in Greece based on the First and Second Law of Thermodynamics. A mathematical model is built and the model equations are solved iteratively in a MATLAB code. The energy and exergy efficiencies as well as the collector losses coefficient for various parameters such as the inlet temperature, the particles concentration and type are determined. Moreover, a dynamic model is built so as to determine the performance of a flat plate collector working with nanofluids and the useful energy that can be stored in a water tank. The exergy destruction and exergy leakage are determined for a typical day in summer during which high temperatures and solar intensity values are common for the Greek climate.


Sign in / Sign up

Export Citation Format

Share Document