scholarly journals POSSIBILITIES TO DETERMINING THE SOLID PARTICLE TRAJECTORIES ON AN OSCILLATING SEPARATION SCREEN

2017 ◽  
Vol 20 (3) ◽  
Author(s):  
EMILIAN MOȘNEGUȚU ◽  
VALENTIN NEDEFF ◽  
OVIDIU BONTAŞ ◽  
NARCIS BÂRSAN ◽  
DANA CHIŢIMUȘ

<p>To understand the process of separating on the sieve of a solid particles heterogeneous mixture has to be known, first of all, the solid particle movement on the working surface. Therefore, in this article is presented a method for determining these characteristics. The working methodology was based on the processing of some video recordings used to obtain some numerical data for the solid particle movement on the oscillating surface, respectively the values for all three axes OX, OY and OZ. These parameters were used to calculate both the speed and acceleration of the solid particle.</p>

2020 ◽  
Vol 71 (6) ◽  
pp. 42-50
Author(s):  
Emilian-Florin Mosnegutu ◽  
Valentin Nedeff ◽  
Narcis Barsan ◽  
Ion Sandu ◽  
Mirela Panainte-Lehadus ◽  
...  

In this paper we present a series of obtained results from the analysis of the behavior of a solid particle on a flat oscillating surface, a process that is found in separation operations of a heterogeneous mixture of solid particles. In this study, the inclination angle of the flat surface (7 or 10 degrees) and the eccentric device speed (91, 244 and 405 rpm) were varied. The results are extracted from video analysis using two commercial video cameras (Sony DCR-SR 36) with a recording speed of 25 frames per second, using the SynthEyes and Mathcad processing software. The obtained results from the analysis helped us to extract data showing the movement on the three axes OX, OY and OZ, average travel distance, average moving time of the solid particle on working surface and average velocity of the solid particle displacement.


Processes ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1259
Author(s):  
Yi Tao ◽  
Yongming Bai ◽  
Yingchun Wu

The impeller blades of ceramic slurry pumps are usually very thick for the purpose of prolonging the service life. In this paper, numerical simulations and wear test were conducted to investigate the influence of blade thickness on the solid–liquid two-phase flow and impeller wear in a ceramic centrifugal slurry pump. The wear test was conducted for CFD validation. The numerical results show that the incident angles of solid particles increase with increasing blade thickness, which results in larger wrap angles of the solid particle trajectories. The increasing wrap angles of the solid particle trajectories offset the region that the collisions between the blade pressure side and the solid particles side take place towards the impeller exit and lead to more impacts between the solid particles and the blade suction side. The numerical results are in good accordance with the wear pattern of the tested impellers, which demonstrates that the numerical method adopted in this paper is predictable in the abrasion of the impeller of a ceramic centrifugal slurry pump. The experimental results show that an increase in the blade thickness alleviates the abrasion of the leading edges and the pressure side of the impeller blades; however, it also aggravates the abrasion of the blade suction side and decreases the pump performance.


2013 ◽  
Vol 773 ◽  
pp. 19-24
Author(s):  
Li Zhang ◽  
Yu Ting Zheng

On the base of the original geometry of the outlet channel of nozzle box, four different geometry of the outlet channel were constructed. Using the Euler-Lagrange method, the flow characteristics of solid particles in the five different channels were numerical simulated. The particle trajectories and the erosion regions were discussed. The analysis showed that the different geometry of the outlet channel would effect the particle erosion in the channel and the stator of the control stage.


2014 ◽  
Vol 659 ◽  
pp. 521-526 ◽  
Author(s):  
Emilian Moşnegutu ◽  
Valentin Nedeff ◽  
Mirela Panaite-Lehadus ◽  
Ovidiu Bontaş ◽  
Narcis Barsan ◽  
...  

The article shows how the operating parameters of a machine used for the separation of a heterogeneous mixture of solid particles affect particle residence time on the working surface in use, the distance followed, respectively the travel speed. Experimental determinations were performed in the laboratory on a stand which working surface runs an alternative oscillatory motion. In the experimental measurements there have been used real particles, respectively small grain beans. Stand parameters which were considered were the angle of the swing plane surface (5o, 7o and 10o) and the crank speed (91, 240 and 405 rpm). As a result of the analysis it was found that between the functional parameters of the working stand (the distance travelled by the particle oscillating solid surface, the time in which the particle follows the distance used as a reference, the linear velocity of the solid particles on the travelled distance) are closely related.


Author(s):  
Shuai Meng ◽  
Qian Wang ◽  
Rui Yang

The phenomenon of impaction between liquid droplets and solid particles is involved in many scientific problems and engineering applications, such as impaction between sprayed droplet and solid particles in limestone injection desulfurization system and the collision between a droplet of the liquid to be granulated and a seed particle in fluidized bed spray granulation process. There are a lot of factors affected this phenomenon: droplet and particle size, momentum of both liquid droplet and solid particles, materials, surface conditions of the solid particles and so on. However the experimental or numerical researches have been done mostly pay attention to Specific application or process, so the impaction phenomenon has not been through studied, for example how different factors affected the impaction process with its effect on different applications. This paper focuses on the basic issue of interaction between droplet and solid particles. Three main factors were considered: ratio of diameter between the droplet and solid particle, relative velocity and the surface tension (including the contact angle between droplet and solid particle). All the study is based on simulation using SPH (smoothed particle hydrodynamics) method, and the surface tension is simulated by particle-particle interaction.


1992 ◽  
Vol 114 (1) ◽  
pp. 54-64 ◽  
Author(s):  
D. P. Chase ◽  
E. F. Rybicki ◽  
J. R. Shadley

As part of a combined experimental and computational study of erosion for gas and oil production conditions, a semi-empirical model has been developed to predict erosion ratio behaviors of metals due to solid particle impingement. One use of the model will be to reduce the total number of experiments needed to characterize erosion behavior. The model represents material property information associated with both the target material and the impinging particles, as well as impingement speed. Five different models are examined in terms of ability to predict erosion ratio behavior as a function of impingement speed. The model selected is based on a conservation of energy formulation and fracture mechanics considerations to predict the amount of material removed due to solid particle impingement. The resulting equation to predict the erosion ratio for a given particle size contains one unknown coefficient which is determined through comparison with experimental data. Illustrative examples are presented for data for two different sizes of glass bead solid particles in an oil carrier fluid impinging on an API (American Petroleum Institute) N80 grade steel target at an impingement angle 90 deg to the target surface. Using erosion data at one impingement speed to determine the unknown coefficient, the model was used to predict erosion behavior at a range of other speeds. Good agreement between the erosion ratio data and the values predicted by the model were found for two solid particle sizes. Recommendations for expanding the capabilities of the model are pointed out.


2018 ◽  
Vol 14 (27) ◽  
pp. 68-79
Author(s):  
Manuel Alejandro Ospina ◽  
Liliana María Usuga Manco

Hydrodynamic interaction is a sensitive process for gravity concentration equipment. Because of the nonlinearity and complexity of interaction dynamics due the solid particles and water, reliable mathematical models are needed to perform plant width design (PWD)-oriented tasks. To this end, in this paper we present a study of particle motion in a water oscillating flow subjected to a sinusoidal profile on a jig device, which is a high yield and high recovery gravimetric concentrator device widely used in minerals processing. A mathematical Eulerian-Lagrangian model (ELM) is used where fluid motion is calculated by solving the Navier-Stokes and continuity equations by a widely used numerical procedure call Semi-Implicit Method for Pressure Linked Equations algorithm (SIMPLE). The motion of individual particles is obtained by a forces balance applying the Newton’s second law of motion through the action of forces imposed by the water and gravity. Liquid-solid interactions forces are calculated by the mathematical Eulerian-Lagrangian model extended to a particle suspension having a wide size and density distribution. The calculation and comparison of Basset, pressure gradient and virtual mass forces with other forces (drag and buoyancy) acting on particle trajectories in water oscillating flows were carried out under turbulent regimen flow. It was found that Basset, pressure gradient and virtual mass forces have a significant effect on the particle’s trajectories affecting their subsequent stratification. Furthermore, the conditions under which these forces can be neglected in the jig’s hydrodynamic model were studied. The study demonstrates significant differences in the particle trajectories for various size and density distribution.


Author(s):  
Deyin Gu ◽  
Fenghui Zhao ◽  
Xingmin Wang ◽  
Zuohua Liu

Abstract The solid-liquid mixing characteristics in a stirred tank with pitched blade impellers, dislocated impellers, and dislocated guide impellers were investigated through using CFD simulation. The effects of impeller speed, impeller type, aperture ratio, aperture length, solid particle diameter and initial solid holdup on the homogeneity degree in the solid-liquid mixing process were investigated. As expected, the solid particle suspension quality was increased with an increase in impeller speed. The dislocated impeller could reduce the accumulation of solid particles and improve the cloud height compared with pitched blade impeller under the same power consumption. The dislocated guide impeller could enhance the solid particles suspension quality on the basis of dislocated impeller, and the optimum aperture ratio and aperture length of dislocated guide impeller were 12.25% and 7 mm, respectively, in the solid-liquid mixing process. Smaller solid particle diameter and lower initial solid holdup led to higher homogeneity degree of solid-liquid mixing system. The dislocated guide impeller could increase solid particle integrated velocity and enhance turbulent intensity of solid-liquid two-phase compared with pitched blade impeller and dislocated impeller under the same power consumption.


Coatings ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 921
Author(s):  
Alicja Krella

Due to the increasing maintenance costs of hydraulic machines related to the damages caused by cavitation erosion and/or erosion of solid particles, as well as in tribological connections, surface protection of these components is very important. Up to now, numerous investigations of resistance of coatings, mainly nitride coatings, such as CrN, TiN, TiCN, (Ti,Cr)N coatings and multilayer TiN/Ti, ZrN/CrN and TN/(Ti,Al)N coatings, produced by physical vapor deposition (PVD) method using different techniques of deposition, such as magnetron sputtering, arc evaporation or ion plating, to cavitation erosion, solid particle erosion and wear have been made. The results of these investigations, degradation processes and main test devices used are presented in this paper. An effect of deposition of mono- and multi-layer PVD coatings on duration of incubation period, cumulative weight loss and erosion rate, as well as on wear rate and coefficient of friction in tribological tests is discussed. It is shown that PVD coating does not always provide extended incubation time and/or improved resistance to mentioned types of damage. The influence of structure, hardness, residence to plastic deformation and stresses in the coatings on erosion and wear resistance is discussed. In the case of cavitation erosion and solid particle erosion, a limit value of the ratio of hardness (H) to Young’s modulus (E) exists at which the best resistance is gained. In the case of tribological tests, the higher the H/E ratio and the lower the coefficient of friction, the lower the wear rate, but there are also many exceptions.


Sign in / Sign up

Export Citation Format

Share Document