scholarly journals SHRINKAGE AND CREEP CHARACTERISTICS OF PALM KERNEL SHELL CONCRETE

2020 ◽  
Vol 26 (1) ◽  
pp. 47-56
Author(s):  
ADETUKASI ADESOLA OLAYINKA ◽  
IKPONMWOSA EFE EWAEN

This research work evaluates the shrinkage and creep characteristics of concrete containing Palm Kernel Shell (PKS) as partial replacement of natural coarse aggregate. Concrete was mixed at 0.55 water-cement ratio, mix proportion of 1:1:2 and percentage replacement of natural aggregate with PKS at 0%, 25 % and 50%. The creep and shrinkage results of Palm Kernel Shell Concrete (PKSC), increased as the percentage content of PKS increased in the concrete. The maximum creep strain observed for normal concrete, 25 % and 50 % PKS content were 0.00018 mm/m, 0.00057 mm/m and 0.00094 mm/m respectively. The maximum total shrinkage strain recorded for 0%, 25% and 50 % PKS content was 0.00102 mm/m, 0.00183 mm/m and 0.00247 mm/m respectively.

2020 ◽  
Vol 26 (1) ◽  
Author(s):  
ADETUKASI ADESOLA OLAYINKA ◽  
IKPONMWOSA EFE EWAEN

<p>This research work evaluates the shrinkage and creep characteristics of concrete containing Palm Kernel Shell (PKS) as partial replacement of natural coarse aggregate. Concrete was mixed at 0.55 water-cement ratio, mix proportion of 1:1:2 and percentage replacement of natural aggregate with PKS at 0%, 25 % and 50%. The creep and shrinkage results of Palm Kernel Shell Concrete (PKSC), increased as the percentage content of PKS increased in the concrete. The maximum creep strain observed for normal concrete, 25 % and 50 % PKS content were 0.00018 mm/m, 0.00057 mm/m and 0.00094 mm/m respectively. The maximum total shrinkage strain recorded for 0%, 25% and 50 % PKS content was 0.00102 mm/m, 0.00183 mm/m and 0.00247 mm/m respectively.</p>


2020 ◽  
Vol 40 (2) ◽  
pp. 59-69
Author(s):  
Hussein Bello ◽  
Taiwo Salako ◽  
Suaib Tijani ◽  
Christopher Fapohunda

This paper presents the results of investigation conducted to evaluate structural performance of lateritic concrete containing palm kernel shell (PKS) as partial replacement of coarse aggregate by weight. The properties evaluated were: workability, density, compressive strength, microstructure, sorptivity, and water absorption of lateritic concrete with PKS specimens. The coarse aggregate fraction of the lateritic concrete was partially replaced with PKS of up to 50% at interval of 10% by weight. The results showed that: (i) the use of PKS to partially replace the coarse aggregate in lateritic concrete resulted in harsh concrete with low workabilities, (ii) lateritic concrete with PKS as partial replacement of coarse aggregate of up to 50% developed densities that can be used for normal concrete application, (iii) lateritic concrete with PKS as partial replacement of coarse aggregate of up to 10% developed strength that is comparable to the specimens without PKS, (iv) the SEM images of lateritic concrete samples showed a progressively porous internal structure with PKS and (v) lateritic concrete with PKS as partial replacement of coarse aggregate results in porous material but became less porous at longer curing ages. It can be concluded from these results that the replacement of the coarse aggregate constituent with PKS by weight not exceeding 10%, in the production of lateritic concrete, resulted in a material with satisfactory structural performance.


2021 ◽  
Vol 11 (4) ◽  
pp. 1630
Author(s):  
Yakubu Newman Monday ◽  
Jaafar Abdullah ◽  
Nor Azah Yusof ◽  
Suraya Abdul Rashid ◽  
Rafidah Hanim Shueb

Carbon dots (CDs), a nanomaterial synthesized from organic precursors rich in carbon content with excellent fluorescent property, are in high demand for many purposes, including sensing and biosensing applications. This research focused on preparing CDs from natural and abundant waste, palm kernel shells (PKS) obtained from palm oil biomass, aiming for sensing and biosensing applications. Ethylenediamine and L-phenylalanine doped CDs were produced via the hydrothermal and solvothermal methods using one-pot synthesis techniques in an autoclave batch reactor. The as-prepared N-CDs shows excellent photoluminescence (PL) property and a quantum yield (QY) of 13.7% for ethylenediamine (EDA) doped N-CDs (CDs-EDA) and 8.6% for L-phenylalanine (L-Ph) doped N-CDs (CDs-LPh) with an excitation/emission wavelength of 360 nm/450 nm. The transmission electron microscopy (TEM) images show the N-CDs have an average particle size of 2 nm for both CDs. UV-Visible spectrophotometric results showed C=C and C=O transition. FTIR results show and confirm the presence of functional groups, such as -OH, -C=O, -NH2 on the N-CDs, and the X-ray diffraction pattern showed that the N-CDs were crystalline, depicted with sharp peaks. This research work demonstrated that palm kernel shell biomass often thrown away as waste can produce CDs with excellent physicochemical properties.


2021 ◽  
Vol 1047 ◽  
pp. 179-185
Author(s):  
Siti Zubaidah Mohd Asri ◽  
Faridah Hanim Khairuddin ◽  
Choy Peng Ng ◽  
Noor Aina Misnon ◽  
Nur Izzi Md Yusoff ◽  
...  

Pavement failures such as fatigue, rutting, cracking, bleeding, and stripping are typical pavement deterioration. Researchers have been experimenting with pavement modification to overcome these problems. This study determines the optimum binder content (OBC) for modifying an asphalt mixture with a partial replacement of coarse aggregate (5mm-14mm sieve size) with palm kernel shell (PKS). A 60/70 penetration grade bitumen was mixed with 10, 20 and 30% PKS at selected aggregate gradation following the Public Work Department of Malaysia (JKR/SPJ/2008-S4) specification. The preparation of 60 samples of unmodified and modified asphalt mixture employed the Marshall Method compacted with 75 blows. The OBC was determined based on five volumetric properties of asphalt mixture namely stability, flow, bulk density, void filled with asphalt, and void in total mix. The OBC and volumetric properties of the modified PKS asphalt mixture samples were compared with unmodified asphalt mixture samples in accordance to the specification. Results showed that the OBC sample with 30% aggregate replacement produced the highest OBC value of 5.53% relative to the control sample with 5.40% OBC. The trend for OBC with PKS replacement begins with 10% PKS with 5.30% OBC, 20% PKS with 5.32% OBC and 30% PKS. All volumetric properties of the PKS samples are within the specification limit. Thus, PKS has a promising potential as a coarse aggregate replacement in asphalt mixture.


2016 ◽  
Vol 1133 ◽  
pp. 171-174
Author(s):  
Mohd Asri Selamat ◽  
Ahmad Aswad Mahaidin ◽  
Mohd Afiq Nurul Hadi ◽  
Zaim Syazwan Sulaiman ◽  
Mohd Idham Abdul Razak

The carbon-copper (C-Cu) composites combine the positive characteristics of thermal and electrical conductivity from Cu, low thermal expansion coefficient and lubricating properties from conventional graphite. For that particular application, C-Cu composites are widely used as electrical contact devices such as carbon brushes and current-collector for railway power collection system. Due to economic and environment concern, activated-carbon produced from MPOB’s oil palm kernel shell (OPKS) is studies as replacement for conventional graphite. The OPKS is crushed and mixed with copper and resin powder before it is compacted into shape. Then the green body undergoes warm-compaction (1140MPa;100-150°C) followed by post-baking (150-250°C) process to enhance its properties. The physical and mechanical properties of the C-Cu composite were analysed. The resulting microstructures, electrical and wear properties also are presented and discussed. The prototype of current-collector for PUTRA LRT and carbon brushes for electrical applications was produced from this research work.


NANO ◽  
2015 ◽  
Vol 10 (02) ◽  
pp. 1550017 ◽  
Author(s):  
Abdullah Al Mamun ◽  
Yehya M. Ahmed ◽  
Ma'an Fahmi R. AlKhatib ◽  
Ahmad Tariq Jameel ◽  
Mohammed Abdul Hakeem Abdul Rahman AlSaadi

Carbon nanofibers (CNFs) were synthesized by using a safe and less hazardous method, compared to using floating catalysts in chemical vapor deposition (CVD) process. This process used C 2 H 2 as carbon source and oil palm kernel shell-based powdered activated carbon (PAC) as cheap solid substrate. Use of nickel ( Ni 2+) impregnated PAC as fixed substrate for the synthesis of CNF is one of the novelties of the research work accomplished by the authors. The PAC–CNFs porous nanocomposite product was used for the sorption of lead ions ( Pb 2+) from synthetic aqueous solution. Kinetics of Pb 2+ adsorption and isotherms were investigated by varying initial concentration of lead and contact time. PAC–CNFs were found to remove Pb 2+ better at acidic pH of about 5.5. Langmuir and Freundlich isotherms were applied to the sorption equilibrium data to find the best fitted model. Langmuir isotherm model with R2 = 0.965 fitted the adsorption data better than the Freundlich isotherm. The kinetic processes of Pb 2+ adsorption on CNFs were investigated by applying different kinetic models, namely zero-order, pseudo-first-order and pseudo-second-order. The pseudo-second-order rate equation exhibited the best results with R2 = 0.999, qe = 74.79 (mg/g) and K2 = 0.029 (min ⋅ g/mg). The novel nanocomposite product seemed to have the potential to remove Pb 2+ ions from aqueous solution.


Author(s):  
Kishor Kumar B. R ◽  
Kishor Kumar B. R ◽  
Kishor Kumar B. R ◽  
Kishor Kumar B. R

In this research work, an attempt is being made to partially replace the natural fine aggregate with sea sand and recycled fine aggregate obtained from demolished concrete waste in varied proportions to concrete mix and subject the specimens to mechanical strength tests for short and long durations of 7, 28, 56 and 90 days curing. The compressive strength, split tensile strength and flexural strength results of 30% mix proportion (15% Sea sand + 15% demolished waste sand) were found to be 58.3 N/mm2, 3.53 N/mm2 and 4.71N/mm2 respectively. All the three strength test results obtained were found to yield 15% higher strength than the control specimens. Finally, it can be concluded that partial replacement of natural fine aggregate by sea sand and demolition recycled fine aggregate in construction industry, not only eliminates the waste management problems and impacts on environment, but also leads to the sustainable development by reducing the consumption of natural resources.


Sign in / Sign up

Export Citation Format

Share Document