Fabrication of Carbon-Copper Composites Using Local Carbon Material: Microstructure, Mechanical, Electrical and Wear Properties

2016 ◽  
Vol 1133 ◽  
pp. 171-174
Author(s):  
Mohd Asri Selamat ◽  
Ahmad Aswad Mahaidin ◽  
Mohd Afiq Nurul Hadi ◽  
Zaim Syazwan Sulaiman ◽  
Mohd Idham Abdul Razak

The carbon-copper (C-Cu) composites combine the positive characteristics of thermal and electrical conductivity from Cu, low thermal expansion coefficient and lubricating properties from conventional graphite. For that particular application, C-Cu composites are widely used as electrical contact devices such as carbon brushes and current-collector for railway power collection system. Due to economic and environment concern, activated-carbon produced from MPOB’s oil palm kernel shell (OPKS) is studies as replacement for conventional graphite. The OPKS is crushed and mixed with copper and resin powder before it is compacted into shape. Then the green body undergoes warm-compaction (1140MPa;100-150°C) followed by post-baking (150-250°C) process to enhance its properties. The physical and mechanical properties of the C-Cu composite were analysed. The resulting microstructures, electrical and wear properties also are presented and discussed. The prototype of current-collector for PUTRA LRT and carbon brushes for electrical applications was produced from this research work.

2021 ◽  
Vol 11 (4) ◽  
pp. 1630
Author(s):  
Yakubu Newman Monday ◽  
Jaafar Abdullah ◽  
Nor Azah Yusof ◽  
Suraya Abdul Rashid ◽  
Rafidah Hanim Shueb

Carbon dots (CDs), a nanomaterial synthesized from organic precursors rich in carbon content with excellent fluorescent property, are in high demand for many purposes, including sensing and biosensing applications. This research focused on preparing CDs from natural and abundant waste, palm kernel shells (PKS) obtained from palm oil biomass, aiming for sensing and biosensing applications. Ethylenediamine and L-phenylalanine doped CDs were produced via the hydrothermal and solvothermal methods using one-pot synthesis techniques in an autoclave batch reactor. The as-prepared N-CDs shows excellent photoluminescence (PL) property and a quantum yield (QY) of 13.7% for ethylenediamine (EDA) doped N-CDs (CDs-EDA) and 8.6% for L-phenylalanine (L-Ph) doped N-CDs (CDs-LPh) with an excitation/emission wavelength of 360 nm/450 nm. The transmission electron microscopy (TEM) images show the N-CDs have an average particle size of 2 nm for both CDs. UV-Visible spectrophotometric results showed C=C and C=O transition. FTIR results show and confirm the presence of functional groups, such as -OH, -C=O, -NH2 on the N-CDs, and the X-ray diffraction pattern showed that the N-CDs were crystalline, depicted with sharp peaks. This research work demonstrated that palm kernel shell biomass often thrown away as waste can produce CDs with excellent physicochemical properties.


NANO ◽  
2015 ◽  
Vol 10 (02) ◽  
pp. 1550017 ◽  
Author(s):  
Abdullah Al Mamun ◽  
Yehya M. Ahmed ◽  
Ma'an Fahmi R. AlKhatib ◽  
Ahmad Tariq Jameel ◽  
Mohammed Abdul Hakeem Abdul Rahman AlSaadi

Carbon nanofibers (CNFs) were synthesized by using a safe and less hazardous method, compared to using floating catalysts in chemical vapor deposition (CVD) process. This process used C 2 H 2 as carbon source and oil palm kernel shell-based powdered activated carbon (PAC) as cheap solid substrate. Use of nickel ( Ni 2+) impregnated PAC as fixed substrate for the synthesis of CNF is one of the novelties of the research work accomplished by the authors. The PAC–CNFs porous nanocomposite product was used for the sorption of lead ions ( Pb 2+) from synthetic aqueous solution. Kinetics of Pb 2+ adsorption and isotherms were investigated by varying initial concentration of lead and contact time. PAC–CNFs were found to remove Pb 2+ better at acidic pH of about 5.5. Langmuir and Freundlich isotherms were applied to the sorption equilibrium data to find the best fitted model. Langmuir isotherm model with R2 = 0.965 fitted the adsorption data better than the Freundlich isotherm. The kinetic processes of Pb 2+ adsorption on CNFs were investigated by applying different kinetic models, namely zero-order, pseudo-first-order and pseudo-second-order. The pseudo-second-order rate equation exhibited the best results with R2 = 0.999, qe = 74.79 (mg/g) and K2 = 0.029 (min ⋅ g/mg). The novel nanocomposite product seemed to have the potential to remove Pb 2+ ions from aqueous solution.


2013 ◽  
Vol 773-774 ◽  
pp. 319-324 ◽  
Author(s):  
Dareddy Ramana Reddy ◽  
Banoth Balunaik

The Friction lining is an essential part of braking system. Friction materials have their significant role for transmission in various machines. Their composition keeps on changing to keep pace with technological development and environmental requirements. Earlier asbestos has been used as a friction material because of its good physical and chemical properties. But later researchers eyed that there are many health hazards associated with asbestos handling. The average disk temperature and average stopping time for pass is increased and it has poor dimensional stability. Hence it has lost favor and several alternative materials are being replaced these days. In this work a non-asbestos bio-friction material is enlighten which is developed using an Agro-waste material palm kernel shell (PKS) along with other Ingredients. Among the agro-waste shells investigated the PKS exhibited more favorable properties. The developed friction material is used to produce automobile disk brake pads. The developed brake pads were tested for functional performance on a specially designed experimental test rig. Physical properties of this new material along with wear properties have been determined and reported in this paper. When compared with premium asbestos based commercial brake pad PKS pads were found to have performed satisfactorily in terms of amount of wear and stopping time.


2020 ◽  
Vol 45 (2) ◽  
pp. 20-27
Author(s):  
Kayode I. Fesomade ◽  
Damilola D. Alewi ◽  
Saliu O. Seidu ◽  
Sheriff O. Saka ◽  
Bonaventure I. Osuide ◽  
...  

This study investigates the influence of palm kernel shell ash (PKSA) on mechanical and wear properties of white cast iron (WCI) particularly its influence on its microstructure, elemental composition, hardness and wear resistance. The PKSA was characterized to determine its elemental composition, and it was found to contain high amount of silicon (Si) and iron (Fe) followed by calcium (Ca) and other trace elements. The cast iron was cast into rods of specific dimension with sand casting method using rotary furnace to re-melt cast iron scrap. The WCI rods were then cut into bits for the various test. Heat treatment operation was carried out to determine its properties. Upon completion of the examinations, it was found that the PKSA increased the cementite phase within the matrix of the cast iron, and reduced the pearlitic phase and graphite formation, which gave it increased hardness, and perfect wear resistance due to the increment in carbon content and reduction in silicon content. Also, upon heat treatment, it was found that the PKSA reduced the pearlitic phase within the matrix of the cast iron, increases the formation of transformed ledeburites, austenitic dendrites and tempered graphite, which lead to increased machinability and ductility as well as to reduced hardness, and wear resistance when compared to non-heat treated samples.


2020 ◽  
Vol 26 (1) ◽  
pp. 47-56
Author(s):  
ADETUKASI ADESOLA OLAYINKA ◽  
IKPONMWOSA EFE EWAEN

This research work evaluates the shrinkage and creep characteristics of concrete containing Palm Kernel Shell (PKS) as partial replacement of natural coarse aggregate. Concrete was mixed at 0.55 water-cement ratio, mix proportion of 1:1:2 and percentage replacement of natural aggregate with PKS at 0%, 25 % and 50%. The creep and shrinkage results of Palm Kernel Shell Concrete (PKSC), increased as the percentage content of PKS increased in the concrete. The maximum creep strain observed for normal concrete, 25 % and 50 % PKS content were 0.00018 mm/m, 0.00057 mm/m and 0.00094 mm/m respectively. The maximum total shrinkage strain recorded for 0%, 25% and 50 % PKS content was 0.00102 mm/m, 0.00183 mm/m and 0.00247 mm/m respectively.


Author(s):  
N. S. A. Yaro ◽  
◽  
M. Napiah ◽  
M. H. Sutanto ◽  
M. R. Hainin ◽  
...  

The advances in industrial technology have led to a major rise in the amount and forms of residue, especially during the processing of agricultural products. With the paradigm shift towards renewable energy and sustainability, there is much emphasis on biomass energy around the world which generates an immense volume of residues yearly. These residues are burgeoning issues because they are not effectively managed and utilized. Hence, one solution is utilizing them in the pavement industry. This article focuses on palm oil mill residues that are abundantly available and discarded in Malaysia. This study evaluates published works of literature relating to the utilization of these residues like the Palm Oil Fiber (POF), Palm Oil Fuel Ash (POFA), and Palm Oil Clinker (POC) and Palm Kernel Shell (PKS) in the pavement industry. The outcome of the review acknowledges the greater sustainability potential of these residues with affirmative and satisfactory performance via the result of numerous research work. Also, with a reduction in CO2-emission, low radioactivity, and heavy metal leaching level. Therefore, the review suggests more exploration and utilization of the residue in the pavement industry since it promotes safety and harness sustainability.


2014 ◽  
Vol 11 (3) ◽  
pp. 199-208 ◽  
Author(s):  
Ibraheem Samotu ◽  
Muhammed Dauda ◽  
David Obada ◽  
Abdulmumin Alabi

Efforts have been made to turn empty water sachet (commonly called pure water nylon), palm kernel shell and iron filings, which are all wastes released into the environment from different sectors of production in Nigeria into a useful material of good physical and mechanical properties. These wastes, especially the empty water sachet, pose a great challenge on the effort of achieving a clean and safe environment, mostly by their contribution to flooding during the rainy season. A recycling aimed research was carried out, making use of these materials to produce a new composite material and proffer suggestions for the possible use of the newly developed composite material. The empty water sachet was used as a matrix, which was reinforced by carbonized palm kernel shell particulate and iron filings. The percentage composition of iron fillings was maintained at 5%wt, while that of palm kernel shell ash was varied from 5%wt - 20%wt at an interval of 5%. The composites were compounded and compressively moulded. Physical and mechanical properties of the composites were tested for and the results obtained shows that the composite material could be used to produce automobile bumper among other parts due to their Impact Strength and low Density. After results analysis, materials with 5%wt of CPKS and that with 10%wt of CPKS were recommended for the automobile bumper production following their high impact strength - density ratio of 0.26 and 0.19 respectively, which are higher as compared to that of Peugeot 406 bumper measured alongside the composite materials.


Nanomaterials ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 689 ◽  
Author(s):  
Ahmad Nicholas ◽  
Mohd Hussein ◽  
Zulkarnain Zainal ◽  
Tumirah Khadiran

The preparation of activated carbon using palm kernel shells as the precursor (PKSAC) was successfully accomplished after the parametric optimization of the carbonization temperature, carbonization holding time, and the ratio of the activator (H3PO4) to the precursor. Optimization at 500 °C for 2 h of carbonization with 20% H3PO4 resulted in the highest surface area of the activated carbon (C20) of 1169 m2 g−1 and, with an average pore size of 27 Å. Subsequently, the preparation of shape-stabilized phase change material (SSPCM-C20) was done by the encapsulation of n-octadecane into the pores of the PKSAC, C20. The field emission scanning electron microscope images and the nitrogen gas adsorption-desorption isotherms show that n-octadecane was successfully encapsulated into the pores of C20. The resulting SSPCM-C20 nano-composite shows good thermal reliability which is chemically and thermally stable and can stand up to 500 melting and freezing cycles. This research work provided a new strategy for the preparation of SSPCM material for thermal energy storage application generated from oil palm waste.


2012 ◽  
Vol 2 (6) ◽  
pp. 315-319 ◽  
Author(s):  
F. A. Olutoge ◽  
H. A. Quadri ◽  
O. S. Olafusi

Many researchers have studied the use of agro-waste ashes as constituents in concrete. These agro-waste ashes are siliceous or aluminosiliceous materials that, in finely divided form and in the presence of moisture, chemically react with the calcium hydroxide released by the hydration of Portland cement to form calcium silicate hydrate and other cementitious compounds. Palm kernel shell ash (PKSA) is a by-product in palm oil mills. This ash has pozzolanic properties that enables it as a partial replacement for cement but also plays an important role in the strength and durability of concrete. The use of palm kernel shell ash (PKSA) as a partial replacement for cement in concrete is investigated. The objective of this paper is to alleviate the increasing challenges of scarcity and high cost of construction materials used by the construction industry in Nigeria and Africa in general, by reducing the volume of cement usage in concrete works. Collected PKSA was dried and sieved through a 45um sieve. The fineness of the PKSA was checked by sieving through 45um sieve. The chemical properties of the ash are examined whereas physical and mechanical properties of varying percentage of PKSA cement concrete and 100% cement concrete of mix 1:2:4 and 0.5 water-cement ratios are examined and compared. A total of 72 concrete cubes of size 150 × 150 × 150 mm³ with different volume percentages of PKSA to Portland cement in the order 0:100, 10:90 and 30:70 and mix ratio of 1:2:4 were cast and their physical and mechanical properties were tested at 7, 14, 21 and 28 days time. Although the compressive strength of PKSA concrete did not exceed that of OPC, compressive strength tests showed that 10% of the PKSA in replacement for cement was 22.8 N/mm2 at 28 days; which was quite satisfactory with no compromise in compressive strength requirements for concrete mix ratios 1:2:4. This research showed that the use of PKSA as a partial replacement for cement in concrete, at lower volume of replacement, will enhance the reduction of cement usage in concretes, thereby reducing the production cost. This research was carried out at the University of Ibadan, Ibadan, Nigeria.


Sign in / Sign up

Export Citation Format

Share Document