scholarly journals PREPARATION AND CHARACTERIZATION OF CALCIUM FLUORIDE NANO PARTICLES FOR DENTAL APPLICATIONS

2018 ◽  
Vol 6 (1) ◽  
pp. 338-346 ◽  
Author(s):  
Mohammad S. Al-Ajely ◽  
Kareema M. Ziadan ◽  
Rafed. M. Al-Bader

The aim of the present study was to prepare a calcium fluoride (CaF2NP) Nano particle which is used in dental composites as dental filling compo glass type. CaF2 Nano powders were prepared using a Co-precipitation method using binary liquid. Crystal Structural characteristics and Elemental composition of (CaF2NP) Nanoparticles were predicted by X-ray diffraction (XRD), which showed crystalline peaks of   this material. Elemental composition was obtained from EDX analysis.  Morphology and diameters of the Nano fibers were studied by scanning electron Microscope (SEM). The size of the particles was also measured from SEM images about 58 ± 21 nm.

2012 ◽  
Vol 581-582 ◽  
pp. 525-528
Author(s):  
Jia Feng Zhang ◽  
Bao Zhang ◽  
Xue Yi Guo ◽  
He Zhang Chen ◽  
Jian Long Wang ◽  
...  

The LiFe0.98Mn0.02PO4/C was synthesized by spray-drying and low temperature reduction route using FePO4•2H2O as precursor, which was prepared by a simple co-precipitation method. The LiFe0.98Mn0.02PO4/C sample was characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and electrochemical measurements. The XRD analysis and SEM images show that sample has the good ordered structure and spherical particle. The charge-discharge tests demonstrate that the powder has the better electrochemical properties, with an initial discharge capacity of 162.1 mAh•g−1 and 155.8 mAh•g−1 at current density of 0.1 C and 1C, respectively. The capacity retention reaches 99.4% after 100 cycles at 1C.


2015 ◽  
Vol 719-720 ◽  
pp. 132-136 ◽  
Author(s):  
Ghazaleh Allaedini ◽  
Siti Masrinda Tasirin ◽  
Meor Zainal Meor Talib ◽  
Payam Aminayi ◽  
Ifa Puspasari

This study presents comparisons between the morphologies and photoluminescence properties of tin oxide (SnO2) nanoparticles prepared by two methods, namely the sol gel and the co-precipitation methods. The characteristics of the particles were analyzed using X-ray diffraction (XRD), fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). The particles prepared using the sol-gel method have a finer particle size and more spherical shape. However, no significant difference was observed in terms of morphology and homogeneity in the samples produced by either the co-precipitation or sol-gel methods. In contrast, the photoluminescence study shows that the emission peak for powder prepared using the sol-gel method was higher than that of the co-precipitation method.


2012 ◽  
Vol 584 ◽  
pp. 248-252
Author(s):  
B. Sankara Reddy ◽  
S. Venkatramana Reddy ◽  
R.P. Vijaya Lakshmi ◽  
N. Koteeswara Reddy

Pure ZnO and Ag, Co doped ZnO nano particles [Zn1-xAgxCoyO, where x = 0.00 and 0.05, y = 0.05] were synthesized by chemical co precipitation method without use of surfactant. All the prepared samples calcinated in 1 hour at 500oC, after that the morphology of the samples were evaluated by Scanning Electron Microscope (SEM). The X- ray diffraction (XRD) results indicated that the synthesized co-doped ZnO nano crystals had the pure hexagonal structure without any significant change in the structure affected by Ag and Co substitution. Dopant elements Ag and Co are present in the ZnO host material and conformed by Energy Dispersive Analysis of X-ray Spectra (EDAX). The incorporation of Ag+ in the place of Zn2+ has made a considerable decrease in the size of nano crystals as compared to pure ZnO nano particles (It is to be noted that Co should be kept constant at 5 mol %). Blue emission was observed by Photo Luminescence (PL) Spectra.


2010 ◽  
Vol 7 (1) ◽  
pp. 195-200
Author(s):  
K. K. Dubey ◽  
V. Nayar ◽  
P. S. Choudhary

Zinc Sulfide nanoparticles were prepared by chemical rout i.e. co-precipitation method. X-ray diffraction profiles of ZnS have been conformed as single phase with hexagonal structure. And crystalline in nature. The lattice parameters of prepared material is a= 3.8314A0 c=6.2431A0 with space group P63mc. The particle size was determined by scherer formula and found to be 28 nm. The band gap energy of ZnS nanoparticles was determined by optical absorption experiment and found to be 3.68 eV at 300oK. Photoluminescence spectra ware recorded by luminescence spectrophotometer. All the plots contains two peak centered at 315 nm and 425 nm. The excitation wavelength was 250 nm. Appearance of broad peaks centered at 425 nm is attributed to the presence of sulphur vacancies in the lattice.


2013 ◽  
Vol 645 ◽  
pp. 129-132 ◽  
Author(s):  
Jantasom Khanidtha ◽  
Suttinart Noothongkaew ◽  
Supakorn Pukird

SnO2-CuO nanocomposites have been synthesized with the simple co-precipitation method for gas sensing properties. Sn and CuO powder were the starting materials. The synthesized products were investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results show that SnO2-CuO nanocomposites have a tetragonal and monoclinic structure, respectively. SEM images verify that the some microballs are up to 10 µm and nanorods have a diameter range from 10-100 nm, while length ranges a few micrometers. The nanocomposite products were highly sensitivity to CO2gas at room temperature.


2020 ◽  
Vol 1010 ◽  
pp. 187-193
Author(s):  
Ali Arlina ◽  
Nadiah Ameram ◽  
Nik Alnur Auli

In this work, comparison of TiO2 additions on the physical properties of YBa2Cu3Oδ superconductor system with nominal starting compositions at x= 0, 1, 2, and 5 wt.% was studied derived via solid state reaction and co-precipitation method. The samples were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The result from XRD shown that all the samples were polycrystalline for solid state reaction, while single phase appear for co-precipitation methods. The intensity of the peak become higher with increasing amount of TiO2 addition indicating the presence of increased amount of the unreacted in the samples. The refine lattice parameters indicated that all the samples have an orthorhombic crystal structure without occurrence of orthorhombic-tetragonal phase transformation. Furthermore, from SEM images for solid state reaction and co-precipitation method showed that the grain size of the samples decreased with TiO2 increased. Small addition of TiO2 derived from co-precipitation method enhanced the YBCO microstructures.


Author(s):  
Nguyen Duong

NiFe2O4/ZnO core-shell nanocomposites were prepared by two-step methodology. First, NiFe2O4 nanoparticles as the cores were synthesized by using hydrothermal method, and then modified by sodium citrate. After that ZnO as the shell was coated on modified NiFe2O4 nanoparticles by two different chemical methods including hydrothermal and co-precipitation. The formation, crystal structure, morphology and magnetic properties of the uncoated and coated samples were investigated by using X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy and vibrating sample magnetometer. It was shown that the core nanoparticles are single phase of NiFe2O4 with cubic spinel structure. Sodium citrate was well bonded on the surface of the modified nanoparticles. Contributions of the phases in the coated samples as well as structural parameters were determined from XRD data on applying of Rietveld refinement analysis. Magnetization of the core can be improved by adjusting the modification steps. XRD analysis result and SEM images revealed the formation of core/shell structure in the sample coated by using co-precipitation method.


2019 ◽  
Vol 51 (4) ◽  
pp. 353-361
Author(s):  
Mohamed Afqir ◽  
Amina Tachafine ◽  
Didier Fasquelle ◽  
Mohamed Elaatmani ◽  
Jean-Claude Carru ◽  
...  

SrBi2NbO9 compounds were prepared through three methods: oxalate co-precipitation, molten salt synthesis and polymerizable complex. The effect of the molecular precursor route has also been investigated. For oxalate co-precipitation method, a solution obtained from acid oxalate, niobium oxide, bismuth nitrate and strontium nitrate are precipitated by ammoniac solution. Then, the precipitated sample is calcined at 1100?C. A methanol-citric acid solution of solution of NbCl5, ethylene glycol, bismuth and strontium nitrates were used as precursors. A black powder ash was crystallized by heat-treating at 1100?C. Molten salt technique using oxides and carbonate as starting materials and NaCl and KCl to form a reaction medium. The formation temperature was at 1110?C. Multiple characterizations mainly X-ray diffraction, Fourier transformed infrared spectroscopy and scanning electron microscopy (SEM) measurements have provided to validate the structural feature. Careful, X-ray diffraction analysis showed the presence of two-layered Aurivillius structure. The crystallite size is discussed by Scherrer and Williamson-Hall approaches. SEM images of SrBi2NbO9 ceramics showed plate-like, polygonal and structureless morphologies obtained at different synthesis conditions. Whatever the synthesis process, there is no change on the band of infrared spectra.


2016 ◽  
Vol 675-676 ◽  
pp. 535-538
Author(s):  
Wanichaya Mekprasart ◽  
Suchada Worasawat ◽  
Thanit Tangcharoen ◽  
Wisanu Pecharapa

Zn-Al-O compounds were successfully synthesized via co-precipitation method at pH 8 followed by calcination process at 900 oC. Influence of different precursor (Zn:Al) ratio and calcination period on their structural properties and formation have been investigated. Varying Zn:Al ratio was conducted at 2:1, 1:1, 1:2 and 1:4 with different calcination time at 0, 2, 4, and 6 h. Phase transformation and morphologies were characterized by X-ray diffraction and field-emission scanning electron microscope. Moreover, chemical bonding of Zn-Al-O compound was analyzed by Raman spectroscopy. The results indicated that chemical bonding between Zn-Al oxide evidentially occurred in all samples in composite form and spinel structure. In addition, the amount of Al content considerably contributes to significant aggregation in zinc aluminate (ZnAl2O4) spinel crystalline phase affirmed by XRD result. Meanwhile, SEM images reveal high crystallinity and strong formation of the compound obtained by prolong calcined period.


2010 ◽  
Vol 1266 ◽  
Author(s):  
Hongming Yu ◽  
Ruijun Pan ◽  
Xuefei Chen ◽  
Wentao Song ◽  
Jian Xie ◽  
...  

AbstractLiFePO4/graphene-oxide (GNO) composites were prepared by co-precipitation method. Their structure and morphology were investigated by X-ray diffraction, Fourier transform infrared spectra, field emission scanning electron microscopy, and transmission electron microscopy. A low content of GNO can be uniformly dispersed in the matrix of LiFePO4 nano particles, while at a higher content, GNO will aggregate severely and has a negative effect on the electrochemical performance of LiFePO4. Further heat treatment can improve the crystallinity of LiFePO4, and improve the electrochemical performance of LiFePO4 with a relatively low content of GNO.


Sign in / Sign up

Export Citation Format

Share Document