scholarly journals EFFECT OF TEMPERATURE VARIATION ON THE PRODUCTION OF BIODIESEL USING NEEM OIL

2018 ◽  
Vol 6 (9) ◽  
pp. 442-450
Author(s):  
Mujidatu Ahmed Lira ◽  
Musa Idris Atadash

Biodiesel was produced from neem seed oil via a two-step process of esterification and transesterififcation reactions. The transesterification was carried out using CH3ONa as catalyst with ethanol as the alcohol. The reaction temperature was varied between 30, 40, 50, 60, and 700C, while all other process parameters were kept constant. From the results obtained, a significant change in biodiesel yield (73-79%) from 30-50oC temperatures was observed. At a temperature of 60oC, a good yield of 94% was obtained which was observed at a temperature below the boiling point of the alcohol used. At 70oC biodiesel yield of 67% was obtained; this indicates a drop in biodiesel yield. Further flash point of 149.60C indicated that the biodiesel produced is within the specification of ASTM D6751. Also, the high value of flash point indicated that the fuel is safe for handling as it exceeds the minimun ASTM requirement (130min). It is worthy to mention that other properties such as viscosity, pour point and cloud point etc investigated also presented good values which were within ASTM D6751. The formation of biodiesel was confirmed by FT-IR analysis. The conversion of the ester functional group into methyl esters in biodiesel verified the success of the reaction.

2018 ◽  
Vol 6 (9) ◽  
pp. 451-457
Author(s):  
F. Sini ◽  
I. M Atadashi

Biodiesel was prepared through alkali-catalysed transesterification of neem seed oil using sodium hydroxide as catalyst and ethanol. This process of was carried out firstly throuch eserification and then via transesterification. The process was carried out by varying stirring speed (350, 450, 550, 650, 750 and 850 rpm.) and keeping other variables constant (temperature of 60oC, catalyst concentration of 1w/w%  and 6:1 oil to ethanol molar ratio). In this research work, a yield of 93w/w% was achieved at the stirring speed of 850 rpm. It was observed that the viscosity (3.73mm2/s at 400C) of neem oil methylester generated was within the limit (2-6mm2/s) specified by the American Society for Testing and Materials Standards. The density of neem biodiesel at ambient temperature (250C) was found to be 0.85g/ml, which is exactly close to the density of diesel (0.83g/ml). The Flash Point of the neem oil biodiesel produced was 153.60C which above the ASTM D6751 minimum standards for biodiesel fuel of 130oC. Furthermore, Neem oil biodiesel has a pour point of -40C and a cloud point of 20C. These values clearly indicate that the use of neem oil methyl esters in colder regions is limited. However, this value is also indicative of the high potential of this fuel as biodiesel particularly in Northern Nigeria where temperature is always above 20oC, a temperature at which the oil is fluid.


Author(s):  
Anusha P

Abstract: The consumption of edible oil is very high in the country and still the indigenous production does not meet the demand and considerable amount of edible oil is imported. Also, it is not advisable to divert these sources for biodiesel production. On the other hand, the non-edible oil resources could be a solution for biodiesel production. Non-edible oil from the plant seeds is the most promising alternative fuel for internal combustion engine because it is renewable, environment friendly, non-toxic, biodegradable has no sulphur and aromatics, has favourable combustion value and higher cetane number. Extensive work has been done on the transesterification of non-edible oils; however, no significant work has been done on the optimization of transesterification process, oil characterization and fuel analysis of most of the non-edible seed oils. Low cost and abundantly found non-edible oils such as Neem oil could be a better option for biodiesel processing. In the present work, optimization of transesterification process and analysis of biodiesel from non-edible oil was done; based on optimized protocol for biodiesel production from Neem seed oil converted into fatty acid methyl esters (FAME) through base catalyzed trans esterification using an optimum ratio of 1:6 (Oil : Methanol) at 600C. Biodiesel from these sources was analyzed for qualitative and quantitative characterization by using, GC-MS and FT-IR techniques. Based on qualitative and quantitative analysis of biodiesel, it is concluded that the biodiesel from these species can be feasible, cost effective and environment friendly. Keywords: Neem oil, Biodiesel, Tran’s esterification, GC-MS, and FT-IR.


2015 ◽  
Vol 34 ◽  
pp. 7-14
Author(s):  
Prithviraj Bhandare ◽  
G.R. Naik

Fossil fuel resources are decreasing daily while biodiesel fuels are attracting increasing attention worldwide as blending components or direct replacements for diesel fuel in vehicle engines. In this experiment the seed oils of 30 Neem (Azadirachta indica. A. juss) biotypes were screened and evaluated for their physio-chemical parameters for oil content, biodiesel yield, density, viscosity, iodine value , free fatty acid and saponification value. Hence the neem seed oil tested in this current study could be the potential sources of raw material for biodiesel production.


Author(s):  
Lkama J. Drambi ◽  
Yusuf Mohammed

The study investigated the effects cutting fluids on tool wearing on high speed steel (HSS) using mild steel workpiece for teaching machining operation. Two specific objectives guided the study, two corresponding research questions were poised and two null hypotheses were formulated. The theoretical frame work for the study was hinged on experiential learning theory as propounded by Rogers (1969). The growing demand for biodegradable materials has opened an avenue for using vegetable oils such as neem seed oil, castor oil and water melon seed oil as an alternative to conventional cutting fluids. In this study, some aspects of the turning process on mild steel using HSS cutting tool at variety of spindle speed, feed rate and constant depth of cut were observed using neem seed oil, soluble oil and straight oil in comparison. The data collected from the study was analyzed using mean and analysis of variance (ANOVA). The decision rule was that, the smaller the mean value obtained the more effective the cutting fluid and the higher the mean value, the less effective the cutting fluid. The hypotheses were tested at α=0.05 significance level using analysis of variance (ANOVA). The findings of the study revealed that soluble oil is more effective in reducing tool wearing than neem oil and straight oil at variety of feed rates and spindle speeds during machining operation. Also there is no significant difference in the mean readings of tool wearing when using neem oil, soluble oil, and straight oil as cutting fluid. It was therefore recommended that machinists should be encouraged to use soluble oil which has greater advantage over neem and straight oils in machining operations


2014 ◽  
Vol 7 (11) ◽  
pp. 10931-10964
Author(s):  
A. M. Dillner ◽  
S. Takahama

Abstract. Organic carbon (OC) can constitute 50% or more of the mass of atmospheric particulate matter. Typically, the organic carbon concentration is measured using thermal methods such as Thermal-Optical Reflectance (TOR) from quartz fiber filters. Here, methods are presented whereby Fourier Transform Infrared (FT-IR) absorbance spectra from polytetrafluoroethylene (PTFE or Teflon) filters are used to accurately predict TOR OC. Transmittance FT-IR analysis is rapid, inexpensive, and non-destructive to the PTFE filters. To develop and test the method, FT-IR absorbance spectra are obtained from 794 samples from seven Interagency Monitoring of PROtected Visual Environment (IMPROVE) sites sampled during 2011. Partial least squares regression is used to calibrate sample FT-IR absorbance spectra to artifact-corrected TOR OC. The FTIR spectra are divided into calibration and test sets by sampling site and date which leads to precise and accurate OC predictions by FT-IR as indicated by high coefficient of determination (R2; 0.96), low bias (0.02 μg m−3, all μg m−3 values based on the nominal IMPROVE sample volume of 32.8 m−3), low error (0.08 μg m−3) and low normalized error (11%). These performance metrics can be achieved with various degrees of spectral pretreatment (e.g., including or excluding substrate contributions to the absorbances) and are comparable in precision and accuracy to collocated TOR measurements. FT-IR spectra are also divided into calibration and test sets by OC mass and by OM / OC which reflects the organic composition of the particulate matter and is obtained from organic functional group composition; this division also leads to precise and accurate OC predictions. Low OC concentrations have higher bias and normalized error due to TOR analytical errors and artifact correction errors, not due to the range of OC mass of the samples in the calibration set. However, samples with low OC mass can be used to predict samples with high OC mass indicating that the calibration is linear. Using samples in the calibration set that have a different OM / OC or ammonium / OC distributions than the test set leads to only a modest increase in bias and normalized error in the predicted samples. We conclude that FT-IR analysis with partial least squares regression is a robust method for accurately predicting TOR OC in IMPROVE network samples; providing complementary information to the organic functional group composition and organic aerosol mass estimated previously from the same set of sample spectra (Ruthenburg et al., 2014).


1990 ◽  
Vol 44 (8) ◽  
pp. 1355-1359 ◽  
Author(s):  
P. Doumenq ◽  
M. Guiliano ◽  
J. C. Bertrand ◽  
G. Mille

2021 ◽  
Vol 25 (8) ◽  
pp. 1365-1369
Author(s):  
D.T. Adeyemi ◽  
A. Saleh ◽  
F.B. Akande ◽  
O.O. Oniya ◽  
F.A. Ola

The objective of this study was to determine the fuel properties of Sand Apple Ethyl Ester (SAEE) and its blends with Automotive Gas Oil (AGO).using eggshell as catalyst. Sand apple seed oil (SASO) obtained was characterized based on America Society for Testing and Material (ASTM D6751) to determine acid value, saponification, iodine content, density, kinematic viscosity, flash point, cloud point and pour point. Sand Apple fruits were processed and oil extracted using solvent extraction method. Raw eggshells were calcined at 800oC for 120 min in the muffle furnace. SAEE was blended with AGO at 5 – 25 % mix. Data obtained was analyzed using ANOVA at P < 0.05 significant level. Cloud and pour points obtained for SASO are 4.68 and 3.09℃ . Flash point was 103℃ which fell within ASTM D93 range indicating that SASO is safe for handling and storage. Heating value was 42.61 MJ/kg, slightly lower than that of diesel oil of 44.8 MJ/kg shows that AGO has ability to produce heat of combustion than SASO. Iodine value was 80.71 g I/100g while acid value was determined to be 2.62 mgKOH/g, which was higher than that of ASTM D6751 of 0.5 mgKOH/g. Sulphur contents for AGO and SASO–AGO blends were 0.006, 0.009, 0.014, 0.016 and 0.004%, respectively. Low sulphur values indicates that hazardous sulphur dioxide emission of SAEE has reduced. This study established that all the properties obtained, except acid value, fell within the ASTM specification and could suitably be compared with those of fossil diesel.


2018 ◽  
Vol 53 (3) ◽  
pp. 211-218 ◽  
Author(s):  
SK Banik ◽  
MA Rouf ◽  
T Rabeya ◽  
M Khanam ◽  
SI Sajal ◽  
...  

Neem oil was extracted from neem seeds by mechanical extraction method. Yield of oil was 21.32%. The physicochemical properties of the extracted oil were studied in detail. The oil corresponds to diesel except acid value (14.21%) and sulphur content. Acid esterification was performed to reduce the acid value which was followed by transesterification to produce biodiesel. The conditions of the transesterification of the oil were optimized and were found to be 20% methanol and 1.0% NaOH at 60 ̊ C for 90 min. The optimum yield of biodiesel was 98 %. Finally, the performance study in a diesel engine was conducted with diesel and biodiesel blends. The brake thermal efficiency for 5% blend of biodiesel was 16.67% for brake power of 0.79 KW.Bangladesh J. Sci. Ind. Res.53(3), 211-218, 2018


2021 ◽  
Vol 12 (2) ◽  
pp. 141-143
Author(s):  
I.S. Ibrahim ◽  
I.T. Abdullahi ◽  
F.Y. Muhammad

Biodiesel is derived from triglycerides by transesterification reaction with alcohol (ethanol or methanol), and has classified as a renewable, biodegradable, and nontoxic fuel. Several methods for biodiesel production have been developed, among which transesterification using alkali-catalysis gives high levels of conversion of triglycerides to their corresponding methyl esters in short reaction times. This study was conducted to extract the neem and Jatropha oil for the production of biodiesel using alkali-catalyzed reaction The samples were subjected to reaction with sodium hydroxide (NaOH), 0.2:1 w/v methanol (MeOH) to oil mole ratio, reaction temperature of 6°C, and 30 min reaction time. The final biodiesel yield obtained was 47.5% and 45.5% from the neem and the jaropha oil sample respectively. The basic physicochemical properties of the jatropha methyl ester produced from both jatropha oil samples were found to be within the ASTM D6751 specified limits.


Sign in / Sign up

Export Citation Format

Share Document