scholarly journals A SURVEY ON FINGERPRINT PATTERN RECOGNITION

2019 ◽  
Vol 7 (8) ◽  
pp. 496-506
Author(s):  
Swarnadip Dey ◽  
Sajal Kumar Karmakar ◽  
Surajit Goon ◽  
Prianka Kundu

In this advance technical time, we all need accuracy to any security system. Among all security system, biometric recognition process is very popular in that time. Not only security purpose, identification is the main cause of using biometric characteristic. A pin, password combination is not enough to secure all things because that’s tracking is possible, but a person biometric characteristic is unique, so it is near to impossible to by-pass. In this paper, we discuss about the fingerprint types such as arch, loop, and whorl. We also discuss how the fingerprint will be recognized; however, where this technique is used in very large scale and what is the future scope of this technique, we discuss what improvement is needed in future.

Author(s):  
Jane J. Aggrey ◽  
Mirjam A. F. Ros-Tonen ◽  
Kwabena O. Asubonteng

AbstractArtisanal and small-scale mining (ASM) in sub-Saharan Africa creates considerable dynamics in rural landscapes. Many studies addressed the adverse effects of mining, but few studies use participatory spatial tools to assess the effects on land use. Hence, this paper takes an actor perspective to analyze how communities in a mixed farming-mining area in Ghana’s Eastern Region perceive the spatial dynamics of ASM and its effects on land for farming and food production from past (1986) to present (2018) and toward the future (2035). Participatory maps show how participants visualize the transformation of food-crop areas into small- and large-scale mining, tree crops, and settlement in all the communities between 1986 and 2018 and foresee these trends to continue in the future (2035). Participants also observe how a mosaic landscape shifts toward a segregated landscape, with simultaneous fragmentation of their farming land due to ASM. Further segregation is expected in the future, with attribution to the expansion of settlements being an unexpected outcome. Although participants expect adverse effects on the future availability of food-crop land, no firm conclusions can be drawn about the anticipated effect on food availability. The paper argues that, if responsibly applied and used to reveal community perspectives and concerns about landscape dynamics, participatory mapping can help raise awareness of the need for collective action and contribute to more inclusive landscape governance. These findings contribute to debates on the operationalization of integrated and inclusive landscape approaches and governance, particularly in areas with pervasive impacts of ASM.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Ming Sun ◽  
Zhixiao Dong ◽  
Jian Yang ◽  
Wendan Wu ◽  
Chenglin Zhang ◽  
...  

Abstract Background Prairie grass (Bromus catharticus) is a typical cool-season forage crop with high biomass production and fast growth rate during winter and spring. However, its genetic research and breeding has remained stagnant due to limited available genomic resources. The aim of this study was to generate large-scale genomic data using high-throughput transcriptome sequencing, and perform a preliminary validation of EST-SSR markers of B. catharticus. Results Eleven tissue samples including seeds, leaves, and stems were collected from a new high-yield strain of prairie grass BCS1103. A total of 257,773 unigenes were obtained, of which 193,082 (74.90%) were annotated. Comparison analysis between tissues identified 1803, 3030, and 1570 genes specifically and highly expressed in seed, leaf, and stem, respectively. A total of 37,288 EST-SSRs were identified from unigene sequences, and more than 80,000 primer pairs were designed. We synthesized 420 primer pairs and selected 52 ones with high polymorphisms to estimate genetic diversity and population structure in 24 B. catharticus accessions worldwide. Despite low diversity indicated by an average genetic distance of 0.364, the accessions from South America and Asia and wild accessions showed higher genetic diversity. Moreover, South American accessions showed a pure ancestry, while Asian accessions demonstrated mixed internal relationships, which indicated a different probability of gene flow. Phylogenetic analysis clustered the studied accessions into four clades, being consistent with phenotypic clustering results. Finally, Mantel analysis suggested the total phenotypic variation was mostly contributed by genetic component. Stem diameter, plant height, leaf width, and biomass yield were significantly correlated with genetic data (r > 0.6, P < 0.001), and might be used in the future selection and breeding. Conclusion A genomic resource was generated that could benefit genetic and taxonomic studies, as well as molecular breeding for B. catharticus and its relatives in the future.


2021 ◽  
Vol 56 (2) ◽  
pp. 113-119
Author(s):  
Xinming Xia ◽  
Wan-Hsin Liu

AbstractThis paper analyses how China’s investments in Germany have developed over time and the potential impact of the COVID-19 pandemic in this regard, based on four different datasets, including our own survey in mid-2020. Our analysis shows that Germany is currently one of the most attractive investment destinations for Chinese investors. Chinese state-owned enterprises have played an important role as investors in Germany — particularly in large-scale projects. The COVID-19 pandemic has had some negative but rather temporary effects on Chinese investments in Germany. Germany is expected to stay attractive to Chinese investors who seek to gain access to advanced technologies and know-how in the future.


Talanta ◽  
2008 ◽  
Vol 74 (4) ◽  
pp. 793-799 ◽  
Author(s):  
Z.L. Cardeal ◽  
P.P. de Souza ◽  
M.D.R. Gomes da Silva ◽  
P.J. Marriott

2021 ◽  
Vol 15 ◽  
Author(s):  
Yanling Zhao ◽  
Huanqing Zhang

Background: Bearing testing machine is the key equipment for bearing design, theoretical research and improvement, and it plays an important role in the performance of bearing life, fatigue, vibration and working temperature. With the requirements of aerospace, military equipment, automobile manufacturing and other industrial fields of the bearing are becoming higher and higher. There is an urgent need for high-precision and high-efficiency bearing testing machines to monitor and analyze the performance of bearings. Objective: By analyzing the recent patents, the characteristics and existing problems of the current bearing testing machine are summarized to provide references for the development of bearing test equipment in the future. Methods: This paper reviews various representative patents related to the third generation bearing testing machines. Results: Although the structure of bearing testing machines is different, the main problems in the structure and design principle of bearing testing machine have been summarized and analyzed, and the development of trend and direction of the future bearing testing machine have been discussed. Conclusion: Bearing testing machines for health monitoring of bearing life cycle is of great significance. The current bearing testing machine has basically achieved the monitoring and analysis However, due to the emergence of new types of bearings, further improvement is still needed. With the development of testing technology towards intelligent and big data-driven direction, bearing testing machine is moving towards the type of cloud computing and large-scale testing.


2016 ◽  
Vol 10 (6) ◽  
pp. 2693-2719 ◽  
Author(s):  
Antoine Marmy ◽  
Jan Rajczak ◽  
Reynald Delaloye ◽  
Christin Hilbich ◽  
Martin Hoelzle ◽  
...  

Abstract. Permafrost is a widespread phenomenon in mountainous regions of the world such as the European Alps. Many important topics such as the future evolution of permafrost related to climate change and the detection of permafrost related to potential natural hazards sites are of major concern to our society. Numerical permafrost models are the only tools which allow for the projection of the future evolution of permafrost. Due to the complexity of the processes involved and the heterogeneity of Alpine terrain, models must be carefully calibrated, and results should be compared with observations at the site (borehole) scale. However, for large-scale applications, a site-specific model calibration for a multitude of grid points would be very time-consuming. To tackle this issue, this study presents a semi-automated calibration method using the Generalized Likelihood Uncertainty Estimation (GLUE) as implemented in a 1-D soil model (CoupModel) and applies it to six permafrost sites in the Swiss Alps. We show that this semi-automated calibration method is able to accurately reproduce the main thermal condition characteristics with some limitations at sites with unique conditions such as 3-D air or water circulation, which have to be calibrated manually. The calibration obtained was used for global and regional climate model (GCM/RCM)-based long-term climate projections under the A1B climate scenario (EU-ENSEMBLES project) specifically downscaled at each borehole site. The projection shows general permafrost degradation with thawing at 10 m, even partially reaching 20 m depth by the end of the century, but with different timing among the sites and with partly considerable uncertainties due to the spread of the applied climatic forcing.


1976 ◽  
Vol 48 (12) ◽  
pp. 1768-1774 ◽  
Author(s):  
T. Fai. Lam ◽  
Charles L. Wilkins ◽  
Thomas R. Brunner ◽  
Leonard J. Soltzberg ◽  
Steven L. Kaberline

Sign in / Sign up

Export Citation Format

Share Document