scholarly journals Semi-automated calibration method for modelling of mountain permafrost evolution in Switzerland

2016 ◽  
Vol 10 (6) ◽  
pp. 2693-2719 ◽  
Author(s):  
Antoine Marmy ◽  
Jan Rajczak ◽  
Reynald Delaloye ◽  
Christin Hilbich ◽  
Martin Hoelzle ◽  
...  

Abstract. Permafrost is a widespread phenomenon in mountainous regions of the world such as the European Alps. Many important topics such as the future evolution of permafrost related to climate change and the detection of permafrost related to potential natural hazards sites are of major concern to our society. Numerical permafrost models are the only tools which allow for the projection of the future evolution of permafrost. Due to the complexity of the processes involved and the heterogeneity of Alpine terrain, models must be carefully calibrated, and results should be compared with observations at the site (borehole) scale. However, for large-scale applications, a site-specific model calibration for a multitude of grid points would be very time-consuming. To tackle this issue, this study presents a semi-automated calibration method using the Generalized Likelihood Uncertainty Estimation (GLUE) as implemented in a 1-D soil model (CoupModel) and applies it to six permafrost sites in the Swiss Alps. We show that this semi-automated calibration method is able to accurately reproduce the main thermal condition characteristics with some limitations at sites with unique conditions such as 3-D air or water circulation, which have to be calibrated manually. The calibration obtained was used for global and regional climate model (GCM/RCM)-based long-term climate projections under the A1B climate scenario (EU-ENSEMBLES project) specifically downscaled at each borehole site. The projection shows general permafrost degradation with thawing at 10 m, even partially reaching 20 m depth by the end of the century, but with different timing among the sites and with partly considerable uncertainties due to the spread of the applied climatic forcing.

2015 ◽  
Vol 9 (5) ◽  
pp. 4787-4843 ◽  
Author(s):  
A. Marmy ◽  
J. Rajczak ◽  
R. Delaloye ◽  
C. Hilbich ◽  
M. Hoelzle ◽  
...  

Abstract. Permafrost is a widespread phenomenon in the European Alps. Many important topics such as the future evolution of permafrost related to climate change and the detection of permafrost related to potential natural hazards sites are of major concern to our society. Numerical permafrost models are the only tools which facilitate the projection of the future evolution of permafrost. Due to the complexity of the processes involved and the heterogeneity of Alpine terrain, models must be carefully calibrated and results should be compared with observations at the site (borehole) scale. However, a large number of local point data are necessary to obtain a broad overview of the thermal evolution of mountain permafrost over a larger area, such as the Swiss Alps, and the site-specific model calibration of each point would be time-consuming. To face this issue, this paper presents a semi-automated calibration method using the Generalized Likelihood Uncertainty Estimation (GLUE) as implemented in a 1-D soil model (CoupModel) and applies it to six permafrost sites in the Swiss Alps prior to long-term permafrost evolution simulations. We show that this automated calibration method is able to accurately reproduce the main thermal condition characteristics with some limitations at sites with unique conditions such as 3-D air or water circulation, which have to be calibrated manually. The calibration obtained was used for RCM-based long-term simulations under the A1B climate scenario specifically downscaled at each borehole site. The projection shows general permafrost degradation with thawing at 10 m, even partially reaching 20 m depths until the end of the century, but with different timing among the sites. The degradation is more rapid at bedrock sites whereas ice-rich sites with a blocky surface cover showed a reduced sensitivity to climate change. The snow cover duration is expected to be reduced drastically (between −20 to −37 %) impacting the ground thermal regime. However, the uncertainty range of permafrost projections is large, resulting mainly from the broad range of input climate data from the different GCM-RCM chains of the ENSEMBLES data set.


2021 ◽  
Author(s):  
Loris Compagno ◽  
Sarah Eggs ◽  
Matthias Huss ◽  
Harry Zekollari ◽  
Daniel Farinotti

<p>With the Paris Agreement, leaders of the world have recognized the urgency of limiting ongoing, anthropogenic climate change. In preparation of the upcoming 26<sup>th</sup> UN Climate Change Conference of the Parties, discussions have been focusing on the difference of limiting the increase in global average temperatures below 1.0, 1.5, or 2.0°C compared to pre-industrial levels. Here, we assess the impacts that such different scenarios would have on both the future evolution of glaciers in the European Alps and the water resources they provide. We force the combined glacier mass balance and ice flow model GloGEMflow with climate projections from Coupled Model Intercomparison Project Phase 6 (CMIP6), and compute the area and volume evolution of all 3926 glaciers of the European Alps for the period 1990 to 2100. Our results show that the different temperature targets have important implications for the predicted changes: in a +1.0°C scenario, glaciers in the European Alpsare<span>  </span>projected to lose 44 ± 21 % of their 2020 ice volume; 68 ± 12 % in a +1.5 °C scenario; while 81 ± 8% in a +2.0°C scenario. The changes in glacier volume will strongly impact the water yield from presently-glacierized catchments, with 2080-2100 yearly average runoffs decreasing by 25 ± 6% (for a global warming of +1.0°C), 32 ± 8%, (+1.5°C) and 36 ± 10% (+2.0°C) when compared to 2000-2020 levels. Changes in peak runoff -- anticipated to occur 1 to 2 months earlier by the end of the century than it does today -- will be even more pronounced, with reductions of 23 ± 15 %, 29 ± 14 %, and 37 ± 15 % in the three warming scenarios, respectively.</p>


2019 ◽  
Author(s):  
Olivier Champagne ◽  
Martin Leduc ◽  
Paulin Coulibaly ◽  
M. Altaf Arain

Abstract. Extreme events are widely studied across the world because of their major implications for many aspects of society and especially floods. These events are generally studied in term of precipitation or temperature extreme indices that are often not adapted for regions affected by floods caused by snowmelt. Rain on Snow index has been widely used but it neglects rain only events which are expected to be more frequent in the future. In this study we identified a new winter compound index and assessed how large-scale atmospheric circulation controls the past and future evolution of these events in the Great Lakes region. The future evolution of this index was projected using temperature and precipitation from the Canadian Regional Climate Model Large Ensemble (CRCM5-LE). These climate data were used as input in PRMS hydrological model to simulate the future evolution of high flows in three watersheds in Southern Ontario. We also used five recurrent large-scale atmospheric circulation patterns in northeastern North America and identified how they control the past and future variability of the newly created index and high flows. The results show that daily precipitation higher than 10 mm and temperature higher than 5 °C were a necessary historical condition to produce high flows in these three watersheds. In the historical period, the occurrences of these heavy rain and warm events as well as high flows were associated to two main patterns characterized by high Z500 anomalies centred on eastern Great Lakes (HP) and the Atlantic Ocean (South). These hydrometeorological extreme events will be more frequent in the near future and will still be associated to the same atmospheric patterns. The future evolution of the index will be modulated by the internal variability of the climate system as higher Z500 in the east coast will amplify the increase in the number of events, especially the warm events. The relationship between the extreme weather index and high flows will be modified in the future as the snowpack reduces and rain becomes the main component of high flows generation. This study shows the values of CRCM5-LE dataset to simulate hydrometeorological extreme events in Eastern Canada and to better understand the uncertainties associated to internal variability of climate.


2018 ◽  
Author(s):  
Harry Zekollari ◽  
Matthias Huss ◽  
Daniel Farinotti

Abstract. Glaciers in the European Alps play an important role in the hydrological cycle, act as a source for hydroelectricity and have a large touristic importance. The future evolution of these glaciers is driven by surface mass balance and ice flow processes, which the latter is to date not included in regional glacier projections for the Alps. Here, we model the future evolution of glaciers in the European Alps with GloGEMflow, an extended version of the Global Glacier Evolution Model (GloGEM), in which both surface mass balance and ice flow are explicitly accounted for. The mass balance model is calibrated with glacier-specific geodetic mass balances, and forced with high-resolution regional climate model (RCM) simulations from the EURO-CORDEX ensemble. The evolution of the total glacier volume in the coming decades is relatively similar under the various representative concentrations pathways (RCP2.6, 4.5 and 8.5), with volume losses of about 47–52 % in 2050 with respect to 2017. We find that under RCP2.6, the ice loss in the second part of the 21st century is relatively limited and that about one-third (36.8 % ± 11.1 %) of the present-day (2017) ice volume will still present in 2100. Under a strong warming (RCP8.5) the future evolution of the glaciers is dictated by a substantial increase in surface melt, and glaciers are projected to largely disappear by 2100 (94.4 ± 4.4 % volume loss vs. 2017). For a given RCP, differences in future changes are mainly determined by the driving global climate model, rather than by the RCM that is coupled to it, and these differences are larger than those arising from various model parameters. We find that under a limited warming, the inclusion of ice dynamics reduces the projected mass loss and that this effect increases with the glacier elevation range, implying that the inclusion of ice dynamics is likely to be important for global glacier evolution projections.


2020 ◽  
Vol 11 (1) ◽  
pp. 301-318 ◽  
Author(s):  
Olivier Champagne ◽  
Martin Leduc ◽  
Paulin Coulibaly ◽  
M. Altaf Arain

Abstract. Extreme events are widely studied across the world because of their major implications for many aspects of society and especially floods. These events are generally studied in terms of precipitation or temperature extreme indices that are often not adapted for regions affected by floods caused by snowmelt. The rain on snow index has been widely used, but it neglects rain-only events which are expected to be more frequent in the future. In this study, we identified a new winter compound index and assessed how large-scale atmospheric circulation controls the past and future evolution of these events in the Great Lakes region. The future evolution of this index was projected using temperature and precipitation from the Canadian Regional Climate Model large ensemble (CRCM5-LE). These climate data were used as input in Precipitation Runoff Modelling System (PRMS) hydrological model to simulate the future evolution of high flows in three watersheds in southern Ontario. We also used five recurrent large-scale atmospheric circulation patterns in north-eastern North America and identified how they control the past and future variability of the newly created index and high flows. The results show that daily precipitation higher than 10 mm and temperature higher than 5 ∘C were necessary historical conditions to produce high flows in these three watersheds. In the historical period, the occurrences of these heavy rain and warm events as well as high flows were associated with two main patterns characterized by high Z500 anomalies centred on eastern Great Lakes (HP regime) and the Atlantic Ocean (South regime). These hydrometeorological extreme events will still be associated with the same atmospheric patterns in the near future. The future evolution of the index will be modulated by the internal variability of the climate system, as higher Z500 on the east coast will amplify the increase in the number of events, especially the warm events. The relationship between the extreme weather index and high flows will be modified in the future as the snowpack reduces and rain becomes the main component of high-flow generation. This study shows the value of the CRCM5-LE dataset in simulating hydrometeorological extreme events in eastern Canada and better understanding the uncertainties associated with internal variability of climate.


2011 ◽  
Vol 1 (32) ◽  
pp. 61 ◽  
Author(s):  
Nicolas Chini ◽  
Peter Stansby ◽  
Mike Walkden ◽  
Jim Hall ◽  
Judith Wolf ◽  
...  

Assessment of nearshore response to climatic change is an important issue for coastal management. To predict potential effects of climate change, a framework of numerical models has been implemented which enables the downscaling of global projections to an eroding coastline, based on TOMAWAC for inshore wave propagation input into SCAPE for shoreline modelling. With this framework, components of which have already been calibrated and validated, a set of consistent global climate change projections is used to estimate the future evolution of an un-engineered coastline. The response of the shoreline is sensitive to the future scenarios, underlying the need for long term large scale offshore conditions to be included in the prediction of non-stationary processes.


2021 ◽  
Author(s):  
Lukas Rettig ◽  
Francesco Ferrarese ◽  
Giovanni Monegato ◽  
Paolo Mozzi ◽  
Matteo Spagnolo

<p>The reconstruction of paleoglaciers and specifically the calculation of their equilibrium line altitude (ELA) is an important source of quantitative paleoclimatic information in mountainous regions. During the Last Glacial Maximum (LGM), the prealpine massifs in the south-eastern part of the Alpine chain (Venetian Prealps, Carnic Prealps and Julian Prealps) hosted several small valley glaciers and local ice caps that were isolated from the larger ice-streams occupying the major valleys. Because of their small size and independent dynamics these glaciers can be considered as excellent indicators of local climatic conditions. Although this potential has long been recognised and the sediments and landforms related to these glaciations have been mapped in a few areas, a regional perspective on this type of glaciation is still lacking. This is primarily due to the wide range of methods of ELA reconstructions that has been applied historically, which makes a solid comparison between different localities difficult.</p><p>Here, we present a detailed re-evaluation of local LGM glaciation in the south-eastern Alps based on a large-scale survey of remote sensing data and targeted field work at selected localities. Recently developed GIS tools were applied for the reconstruction of paleoglacier geometries and ELAs (Pellitero et al. 2015, 2016). The obtained values are used both to discuss regional climatic patterns during the LGM and site-specific topographic factors. A specific focus is set on the Monte Cavallo group, where glacial sediments from the LGM are covering a thick sequence of interstadial lacustrine deposits. A set of new radiocarbon dates from this succession provides a first chronological control on the onset of glacier expansion in this part of the Alpine chain.</p><p> </p><p>References:</p><p>Pellitero, R. et al. 2015. A GIS tool for automatic calculation of glacier equilibrium-line altitudes. Computers & Geosciences 82: 55-62.</p><p>Pellitero, R. et al. 2016. GlaRe, a GIS tool to reconstruct the 3D surface of palaeoglaciers. Computers & Geosciences 94: 77-85.</p>


2021 ◽  
pp. 1-17
Author(s):  
Loris Compagno ◽  
Harry Zekollari ◽  
Matthias Huss ◽  
Daniel Farinotti

Abstract Due to climate change, worldwide glaciers are rapidly declining. The trend will continue into the future, with consequences for sea level, water availability and tourism. Here, we assess the future evolution of all glaciers in Scandinavia and Iceland until 2100 using the coupled surface mass-balance ice-flow model GloGEMflow. The model is initialised with three distinct past climate data products (E-OBS, ERA-I, ERA-5), while future climate is prescribed by both global and regional climate models (GCMs and RCMs), in order to analyze their impact on glacier evolution. By 2100, we project Scandinavian glaciers to lose between 67 ± 18% and 90 ± 7% of their present-day (2018) volume under a low (RCP2.6) and a high (RCP8.5) emission scenario, respectively. Over the same period, losses for Icelandic glaciers are projected to be between 43 ± 11% (RCP2.6) and 85 ± 7% (RCP8.5). The projected evolution is only little impacted by both the choice of climate data products used in the past and the spatial resolution of the future climate projections, with differences in the ice volume remaining by 2100 of 7 and 5%, respectively. This small sensitivity is attributed to our model calibration strategy that relies on observed glacier-specific mass balances and thus compensates for differences between climate forcing products.


2021 ◽  
Author(s):  
Philipp Wanner ◽  
Noemi Buri ◽  
Kevin Wyss ◽  
Andreas Zischg ◽  
Rolf Weingartner ◽  
...  

Abstract. This study aims to determine the contribution of glacial meltwater to streams in mountainous regions based on stable water isotope measurements (δ18O and δ2H). For this purpose, three partially glaciated catchments were selected as the study area in the central Swiss Alps being representative of catchments that are used for hydropower energy production in Alpine regions. The glacial meltwater contribution to the catchments’ stream discharges was evaluated based on high-resolution δ18O and δ2H measurements of the end-members that contribute to the stream discharge (ice, rain, snow) and of the discharging streams. The glacial meltwater contribution to the stream discharges could be unequivocally quantified after the snowmelt in August and September when most of the annual glacial meltwater discharge occurs. In August and September, the glacial meltwater contribution to the stream discharges corresponds to up to 95 ± 2 % and to 28.7 % ± 5 % of the total annual discharge in the evaluated catchments. The high glacial meltwater contribution demonstrates that the mountainous stream discharges in August and September will probably strongly decrease in the future due to global warming-induced deglaciation, which will be, however, likely compensated by higher discharge rates in winter and spring. Nevertheless, the changing mountainous streamflow regimes in the future will pose a challenge for hydropower energy production in the mountainous areas. Overall, this study provides a successful example of an Alpine catchment monitoring strategy to quantify the glacial meltwater contribution to stream discharges based on stable isotope water data, which leads to a better validation of existing modelling studies and which can be adapted to other mountainous regions.


Sign in / Sign up

Export Citation Format

Share Document