scholarly journals FUNCTIONAL BRAIN CORRELATES OF RISK FOR MAJOR DEPRESSION IN CHILDREN AND YOUNG ADULTS

Author(s):  
N. Senthilkumar ◽  
R. Thangarajan

The brain is arguably the most important organ in the human body. It controls and coordinates actions and reactions, allows us to think and feel, and enables us to have memories and feelings. Three brain structures namely the hippocampus, amygdala and prefrontal cortex help the brain determine what is stressful and how to respond. Depression in teenagers is a very serious medical problem that leads to long-lasting feelings of sadness along with a loss of interest in once enjoyed activities. Neuroimaging is the use of various techniques to either directly or indirectly image the structure and function of the nervous system. Magnetic resonance imaging (MRI) are two in types, viz., structural and functional imaging. Functional neuroimaging has greatly helped in understanding the cognitive functions of the brain and its impact on mental health and human behaviour. This paper describes the different types of neuroimaging techniques and its needed software configurations with statistical parametric mapping. This paper also elaborates the basic operations and MATLAB activities and it compare the at-risk and control group depression imaging fMRI analysis techniques with its snapshots.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Norio Takata ◽  
Nobuhiko Sato ◽  
Yuji Komaki ◽  
Hideyuki Okano ◽  
Kenji F. Tanaka

AbstractA brain atlas is necessary for analyzing structure and function in neuroimaging research. Although various annotation volumes (AVs) for the mouse brain have been proposed, it is common in magnetic resonance imaging (MRI) of the mouse brain that regions-of-interest (ROIs) for brain structures (nodes) are created arbitrarily according to each researcher’s necessity, leading to inconsistent ROIs among studies. One reason for such a situation is the fact that earlier AVs were fixed, i.e. combination and division of nodes were not implemented. This report presents a pipeline for constructing a flexible annotation atlas (FAA) of the mouse brain by leveraging public resources of the Allen Institute for Brain Science on brain structure, gene expression, and axonal projection. A mere two-step procedure with user-specified, text-based information and Python codes constructs FAA with nodes which can be combined or divided objectively while maintaining anatomical hierarchy of brain structures. Four FAAs with total node count of 4, 101, 866, and 1381 were demonstrated. Unique characteristics of FAA realized analysis of resting-state functional connectivity (FC) across the anatomical hierarchy and among cortical layers, which were thin but large brain structures. FAA can improve the consistency of whole brain ROI definition among laboratories by fulfilling various requests from researchers with its flexibility and reproducibility.


1998 ◽  
Vol 28 (3) ◽  
pp. 655-663 ◽  
Author(s):  
P. NOPOULOS ◽  
M. FLAUM ◽  
S. ARNDT ◽  
N. ANDREASEN

Background. Morphometry, the measurement of forms, is an ancient practice. In particular, schizophrenic somatology was popular early in this century, but has been essentially absent from the literature for over 30 years. More recently, evidence has grown to support the notion that aberrant neurodevelopment may play a role in the pathophysiology of schizophrenia. Is the body, like the brain, affected by abnormal development in these patients?Methods. To evaluate global deficit in development and its relationship to pre-morbid function, height was compared in a large group (N=226) of male schizophrenics and a group of healthy male controls (N=142) equivalent in parental socio-economic status. Patients in the lower quartile of height were compared to those in the upper quartile of height.Results. The patient group had a mean height of 177·1 cm, which was significantly shorter than the mean height of the control group of 179·4 (P<0·003). Those in the lower quartile had significantly poorer pre-morbid function as measured by: (1) psychosocial adjustment using the pre-morbid adjustment scales for childhood and adolescence/young adulthood, and (2) cognitive function using measures of school performance such as grades and need for special education. In addition, these measures of pre-morbid function correlated significantly with height when analysed using the entire sample.Conclusions. These findings provide further support to the idea that abnormal development may play a key role in the pathophysiology of schizophrenia. Furthermore, this is manifested as a global deficit in growth and function resulting in smaller stature, poorer social skills, and deficits in cognitive abilities.


Author(s):  
Fernando Vidal ◽  
Francisco Ortega

The first chapter proposes to trace the distant roots of the cerebral subject to the late seventeenth century, and particularly to debates about the seat of the soul, the corpuscularian theory of matter, and John Locke’s philosophy of personal identity. In the wake of Locke, eighteenth century authors began to assert that the brain is the only part of the body we need to be ourselves. In the nineteenth century, this form of deterministic essentialism contributed to motivate research into brain structure and function, and in turn confirmed the brain-personhood nexus. Since then, from phrenology to functional neuroimaging, neuroscientific knowledge and representations have constituted a powerful support for prescriptive outlooks on the individual and society. “Neuroascesis,” as we call the business that sells programs of cerebral self-discipline, is a case in point, which this chapter also examines. It appeals to the brain and neuroscience as bases for its self-help recipes to enhance memory and reasoning, fight depression, anxiety and compulsions, improve sexual performance, achieve happiness, and even establish a direct contact with God. Yet underneath the neuro surface lie beliefs and even concrete instructions that can be traced to nineteenth-century hygiene manuals.


2020 ◽  
Vol 10 (2) ◽  
Author(s):  
Nenad Stojiljković ◽  
Petar Mitić ◽  
Goran Sporiš

Purpose. The aim of this study is to reveal the effects of exercise on the brain structure and function in children, and to analyze methodological approach applied in the researches of this topic. Methods. This literature review provides an overview of important findings in this fast growing research domain. Results from cross-sectional, longitudinal, and interventional studies of the influence of exercise on the brain structure and function of healthy children are reviewed and discussed. Results. The majority of researches are done as cross sectional studies based on the exploring correlation between the level of physical activity and characteristics of brain structure and function. Results of the studies indicate that exercise has positive correlation with improved cognition and beneficial changes to brain function in children. Physically active children have greater white matter integrity in several white matter tracts (corpus callosum, corona radiata, and superior longitudinal fasciculus), have greater volume of gray matter in the hippocampus and basal ganglia than their physically inactive counterparts. The longitudinal/interventional studies also showed that exercise (mainly aerobic) improve cognitive performance of children and causes changes observed on functional magnetic resonance imaging scans (fMRI) located in prefrontal and parietal regions. Conclusion. Previous researches undoubtable proved that exercise can make positive changes of the brain structures in children, specifically the volume of the hippocampus which is the center of learning and memory. Finally the researchers agree that the most influential type of exercise on changes of brain structure and functions are the aerobic exercises. 


2013 ◽  
Vol 12 (3) ◽  
pp. 52-60 ◽  
Author(s):  
L. N. Prakhova ◽  
Ye. P. Magonov ◽  
A. G. Ilves ◽  
A. A. Bogdan ◽  
G. V. Kataeva ◽  
...  

The aim of the study was to determine the relationship of global and regional cerebral atrophy and volume of demyelination lesions in the brain with a clinical picture in patients with multiple sclerosis (MS). The study involved 55 patients with MS. Control group included 22 healthy volunteers. Patients were divided into groups according to the severity of disability, the type and duration of disease. Assessment of general and regional atrophy was performed by post-process volumetric segmentation of MRI data, which was acquired at 3T Philips Achieva scanner. The post-processing was done with the FreeSurfer software. It is shown that in MS patients brain atrophy develops both by means of gray matter (including the cortex and subcortical structures), and white matter, along with demyelination. Global and regional atrophy is associated with the severity of disability of patients according to EDSS scale, but not with the duration and type of the disease. Neurodegenerative changes of brain structures evolve with different rates, have different intensity and determine the set of symptoms of neurological impairment and severity of disability, which indicates the presence of certain patterns of the process of atrophy in the brain, forming the clinical picture of the disease.


2011 ◽  
Vol 211 (1) ◽  
pp. 27-37 ◽  
Author(s):  
Han Yan ◽  
Matthew Mitschelen ◽  
Georgina V Bixler ◽  
Robert M Brucklacher ◽  
Julie A Farley ◽  
...  

GH and its anabolic mediator, IGF1, are important not only in somatic growth but also in the regulation of brain function. Even though GH treatment has been used clinically to improve body composition and exercise capacity in adults, its influence on central nervous system function has only recently been recognized. This is also the case for children with childhood-onset GH deficiency (GHD) where GH has been used to stimulate bone growth and enhance final adult height. Circulating IGF1 is transported across the blood–brain barrier and IGF1 and its receptors are also synthesized in the brain by neurons and glial and endothelial cells. Nevertheless, the relationship between circulating IGF1 and brain IGF1 remains unclear. This study, using a GH-deficient dwarf rat model and peripheral GH replacement, investigated the effects of circulating IGF1 during adolescence on IGF1 levels in the brain. Our results demonstrated that hippocampal IGF1 protein concentrations during adolescence are highly regulated by circulating IGF1, which were reduced by GHD and restored by systematic GH replacement. Importantly, IGF1 levels in the cerebrospinal fluid were decreased by GHD but not restored by GH replacement. Furthermore, analysis of gene expression using microarrays and RT-PCR indicated that circulating IGF1 levels did not modify the transcription ofIgf1or its receptor in the hippocampus but did regulate genes that are involved in microvascular structure and function, brain development, and synaptic plasticity, which potentially support brain structures involved in cognitive function during this important developmental period.


Author(s):  
Mark Woolrich ◽  
Mark Jenkinson ◽  
Clare Mackay

The brain is a highly complex system that is inaccessible to biopsy, which puts human brain imaging at the heart of our attempts to understand psychiatric disorders. Imaging has the potential to uncover the pathophysiology, provide biomarkers for use in the development and monitoring of treatments, and stratify patients for studies and trials. This chapter introduces the three main brain imaging technologies that are used to assay brain structure and function: magnetic resonance imaging (MRI), molecular imaging positron emission tomography (PET), and single-photon emission computed tomography (SPECT); electrophysiology [electroencephoaography (EEG)]; and magnetoencephalograpy (MEG). The chapter outlines the principles behind their use and the nature of the information that can be extracted. Together, these brain imaging methods can provide complementary windows into the living brain as an increasingly essential suite of tools for experimental medicine in psychiatry.


2021 ◽  
Vol 28 (Supplement_1) ◽  
Author(s):  
I Leonova ◽  
N Burova ◽  
S Boldueva ◽  
M Demidova ◽  
A Khomulo ◽  
...  

Abstract Funding Acknowledgements Type of funding sources: None. In patients with microvascular angina (MVA) besides of chest pain, a high neuronal activity of certain parts of the head (right anterior insula cortex) was revealed, which is not observed in the control in patients with coronary heart disease with coronary atherosclerosis. There is an opinion that the abnormal sensation of pain is caused not by myocardial ischemia, but by a violation of neuronal regulation. Functional MRI (fMRI) is currently a widely used method of functional mapping of the brain. The principle of the method is to register a BOLD signal (blood oxygen level-depended) from voxels (volumetric points) when examining the brain in response to the fulfillment of a task (paradigm). In response to the activation of a particular region of the brain, hemodynamic parameters change in it, which leads to a decrease in the level of deoxyhemoglobin and an increase in the level of oxyhemoglobin. With neuroimaging, this phenomenon is characterized by an increase in signal intensity in a series of T2 * images, the quantitative assessment of which allows indirectly determining the degree of neuronal activation. The study included 11 patients with MVA (3 men, 8 women). The average age of the patients was 61.45 ± 7.80 years. MVA was proved classic criteria and microvascular disorders (perfusion abnormalities) by cardiac PET. Neuroimaging examination included positron emission tomography scanning using 18-fluoro deoxyglucose (18F-FDG PET) and functional magnetic resonance imaging (fMRI) scanning using the GO / NOGO two-stimulus experimental paradigm. Throughout the study, fMRI and PET data were obtained for 11 patients with MVA and 20 healthy volunteers (control group). Results In patients with MVA, a decrease in neuronal activity was detected during the execution of actions ("GO" tests) compared with the norm in some brain structures: bilateral anterior and middle cingulate gyrus, additional motor region, postcentral gyrus, left in the islet cortex, on the right in the supramarginal gyrus. When ignoring the second stimulus ("P-P ignore."). A decrease compared with the norm was found bilaterally in the anterior and posterior cingulate cortex, the wedge, on the right in the cortex of the rolandic operculum and supramarginal gyrus. The detected clusters of decreased neuronal activity when performing actions and ignoring the second stimulus intersect bilaterally in the middle and anterior cingulate cortex, in the left paracentral lobe, and the right supramarginal gyrus. When suppressing actions ("NOGO samples"), no significant differences were found. According to PET, no significant changes in the level of glucose metabolism in patients with MVA compared with the control group were found. Conclusion In patients with MVA, a decrease in neuronal activity was found when performing actions compared to the norm in some brain structures.


2021 ◽  
Vol 12 ◽  
Author(s):  
Daiki Sasabayashi ◽  
Ryo Yoshimura ◽  
Tsutomu Takahashi ◽  
Yoichiro Takayanagi ◽  
Shimako Nishiyama ◽  
...  

Magnetic resonance imaging (MRI) studies in schizophrenia demonstrated volume reduction in hippocampal subfields divided on the basis of specific cytoarchitecture and function. However, it remains unclear whether this abnormality exists prior to the onset of psychosis and differs across illness stages. MRI (3 T) scans were obtained from 77 patients with schizophrenia, including 24 recent-onset and 40 chronic patients, 51 individuals with an at-risk mental state (ARMS) (of whom 5 subsequently developed psychosis within the follow-up period), and 87 healthy controls. Using FreeSurfer software, hippocampal subfield volumes were measured and compared across the groups. Both schizophrenia and ARMS groups exhibited significantly smaller volumes for the bilateral Cornu Ammonis 1 area, left hippocampal tail, and right molecular layer of the hippocampus than the healthy control group. Within the schizophrenia group, chronic patients exhibited a significantly smaller volume for the left hippocampal tail than recent-onset patients. The left hippocampal tail volume was positively correlated with onset age, and negatively correlated with duration of psychosis and duration of medication in the schizophrenia group. Reduced hippocampal subfield volumes observed in both schizophrenia and ARMS groups may represent a common biotype associated with psychosis vulnerability. Volumetric changes of the left hippocampal tail may also suggest ongoing atrophy after the onset of schizophrenia.


2021 ◽  
Vol 12 ◽  
Author(s):  
María Sol Garcés ◽  
Irene Alústiza ◽  
Anton Albajes-Eizagirre ◽  
Javier Goena ◽  
Patricio Molero ◽  
...  

Recent functional neuroimaging studies suggest that the brain networks responsible for time processing are involved during other cognitive processes, leading to a hypothesis that time-related processing is needed to perform a range of tasks across various cognitive functions. To examine this hypothesis, we analyze whether, in healthy subjects, the brain structures activated or deactivated during performance of timing and oddball-detection type tasks coincide. To this end, we conducted two independent signed differential mapping (SDM) meta-analyses of functional magnetic resonance imaging (fMRI) studies assessing the cerebral generators of the responses elicited by tasks based on timing and oddball-detection paradigms. Finally, we undertook a multimodal meta-analysis to detect brain regions common to the findings of the two previous meta-analyses. We found that healthy subjects showed significant activation in cortical areas related to timing and salience networks. The patterns of activation and deactivation corresponding to each task type partially coincided. We hypothesize that there exists a time and change-detection network that serves as a common underlying resource used in a broad range of cognitive processes.


Sign in / Sign up

Export Citation Format

Share Document