scholarly journals COMPARISON STUDY BEWTWEEN THE RECOVERY BEHAVIOR OF DEFORMED QUENCHED, PRE-ANNEALED AND PULSED LASER DAMAGED Fe50Ni50 ALLOY BY MAGNETIC MEASUREMENTS

Author(s):  
A.R. Ali ◽  
E. Takla ◽  
K.K. Meleka

Through the magnetic measurements, isochronal annealing experiments in the temperature 25950 ºC of deformed, quenched, pre-annealed and pulsed laser damage samples Fe50Ni50 alloy revealed the existence of three annealing stages I, II and III in the annealing spectrum of heavily cold-worked by observing the associated changes in maximum magnetic permeability (µmax) on the magnetic field(H) for different annealing temperature. The first annealing stage I appeared in the temperature range from125-500 ºC and it was activated by energy 1.05 eV. It was attributed to the short range order caused by the long range migration of vacancies. The second annealing stage II appeared in the temperature range from 550-750 ºC and it was activated by 1.82 eV, it is associated with an increase in µmax due to the dissociation of vacancy clusters formed during stage I. The third annealing stage III appeared in the temperature range from 750-825 ºC and it was activated by 3.04 eV, it was related to the climb motion of dislocation during the recrystallization process.

Open Physics ◽  
2005 ◽  
Vol 3 (1) ◽  
Author(s):  
Karen Paul

AbstractA monocrystal ofFe 3 O 4 is characterized by resistance, magnetoresistance and magnetic measurements in a temperature range from 4.2 K to 350 K and magnetic field-cycling from −9 T to 9 T. The resistance measurements revealed a metal-insulator Verwey transition (VT) atT v=123.76 K with activation energy E=92.5 meV at T >T v and temperature-substitute for the activation energy below the VT,T 0=E/k B≈3800 K within 70 K–110K. The magnetotransport results independently verified the VT at 123.70 K, with discontinuous change in the magnetic moment ΔM≈0.21 ΔM≈0.21μ B and resistance hysteresis, dependent on the magnetic field in a narrow temperature range of 0.4° around theT v. The magnetic characterization established self consistentlyT v as ≈123.67 K, the jump in the magnetization at the VT≈0.25μ B and confirmed, that the magnetocrystalline anisotropy is the main microscopic mechanism responsible for the magnetization of the monocrystal (88%) with additional natural and imposed defects contributing as 12%.


2020 ◽  
Vol 494 (2) ◽  
pp. 3014-3027
Author(s):  
M Armano ◽  
H Audley ◽  
J Baird ◽  
P Binetruy ◽  
M Born ◽  
...  

ABSTRACT LISA Pathfinder (LPF) has been a space-based mission designed to test new technologies that will be required for a gravitational wave observatory in space. Magnetically driven forces play a key role in the instrument sensitivity in the low-frequency regime (mHz and below), the measurement band of interest for a space-based observatory. The magnetic field can couple to the magnetic susceptibility and remanent magnetic moment from the test masses and disturb them from their geodesic movement. LPF carried on-board a dedicated magnetic measurement subsystem with noise levels of 10 $\rm nT \ Hz^{-1/2}$ from 1 Hz down to 1 mHz. In this paper we report on the magnetic measurements throughout LPF operations. We characterize the magnetic environment within the spacecraft, study the time evolution of the magnetic field and its stability down to 20 μHz, where we measure values around 200 $\rm nT \ Hz^{-1/2}$, and identify two different frequency regimes, one related to the interplanetary magnetic field and the other to the magnetic field originating inside the spacecraft. Finally, we characterize the non-stationary component of the fluctuations of the magnetic field below the mHz and relate them to the dynamics of the solar wind.


2020 ◽  
Vol 62 (5) ◽  
pp. 669
Author(s):  
С.А. Гудин ◽  
Н.И. Солин

Experimental and theoretical investigations of the resistance of the La1.2Sr1.8Mn2O7 single crystal in magnetic fields from 0 to 90 kOe and in the temperature range from 75 to 300 K has been studied. The magnetoresistance is determined by the “spin-polaron” and “orientation” conduction mechanisms. Using the method of separating contributions to the magnetoresistance from several conduction mechanisms, the observed magnetoresistance of La1.2Sr1.8Mn2O7 manganite in the temperature range of 75-300 K is described, good agreement between the calculated and experimental data is obtained. In a magnetic field of 0 and 90 kOe, the temperature dependences of the size of the spin polaron (in relative units) are calculated for the temperature range 75–300 K. It is shown, that the КМС value is determined by an increase in the linear size of the spin polaron (along the magnetic field), i.e. the main role in the magnitude of the colossal magnetoresistance is made by the change in the size of the magnetic inhomogeneities of the crystal.


Author(s):  
Yu.V. Maslennikov ◽  
◽  
◽  

There are a large number of sensors for measuring the magnetic field of biological objects. They are characterized by the type of the measured physical parameter (magnetic field strength, magnetic flux, etc.), the level of intrinsic sensitivity, and the frequency range of the recorded signals. The long-term practice of studying biomagnetic signals shows that only SQUID-based magnetometers and optically pumped magnetometers have sensitivity levels sufficient for recording biomagnetic signals with the required signal-to-noise ratio. This chapter reflects the main directions of using such magnetometers and methods of magnetic measurements in biomedical research, gives examples of existing technical solutions, and shows possible ways of their further development.


2020 ◽  
Vol 10 (23) ◽  
pp. 8454
Author(s):  
Soontorn Odngam ◽  
Chaiyut Preecha ◽  
Prapaiwan Sanwong ◽  
Woramet Thongtan ◽  
Jiraphon Srisertpol

This research presents the design and construction of measuring instruments for a dipole magnetic field using a rotating coil technique. This technique is a closed-loop speed-control system where a Proportional-Integral (PI) controller works together with the intensity measurement of the magnetic field through the rotating coil. It was used to analyze the impact on the accuracy of the electromagnetic at speed ranges of 60, 90, and 120 rpm. The error estimation in the measurement of the normal dipole and skew dipole magnet caused by the steady-state error of the speed control system and the rotational search coil in whirling motion are demonstrated. Rotating unbalance, shaft coupling, and misalignment from its setup disturbed the performance of the speed control system as a nonlinear system.


2001 ◽  
Vol 15 (24n25) ◽  
pp. 3266-3269 ◽  
Author(s):  
G. DEWAR ◽  
S. PAGEL ◽  
P. SOURIVONG

Ferromagnetic resonance measurements have been performed on several samples of Terfenol-D ( Dy0.73Tb0.27Fe1.95 ) at 16.95 GHz and over the temperature range 293 to 305 K. We find that the first magnetocrystalline anisotropy constant, obtained from one sample under nearly zero stress, is K1 = (-1.4±1.0)× l06 erg/cm 3 at 294 K. Our measurement is distinct from quasistatic torque measurements in that the lattice does not deform during the measurement and, hence, the anisotropy contribution due to magnetoelastic strain does not enter. The bare anisotropy constant, unmodified by static elastic strain, is [Formula: see text] and [Formula: see text]. The samples exhibited hysteresis; the position of FMR shifted by 4.0 kOe between measurements made with the magnetic field increasing and those made with the field decreasing.


2020 ◽  
Vol 989 ◽  
pp. 110-115
Author(s):  
Yu.D. Koryagin ◽  
S.I. Il'in ◽  
N.A. Shaburova

The results were shown in influence of fast heating parameters on the structure and properties of cold-worked alloy AMg6 with original hot-forged structure. Based on the measured data, the change of mechanical properties of cold-worked alloy AMg6 during the process of short duration heating was evaluated. There was reviewed the role of the temperature and the time of heat on the processes of softening the samples of cold-worked alloy AMg6. The stability of mechanical characteristics of hammer-hardened alloy AMg6 under elevated test temperatures was evaluated. It is shown that the return processes in cold-deformed AMg6 alloy during heating in the temperature range studied receive the most intensive development in the first 5–10 minutes, reducing the hardening effect from cold deformation, determined by tensile strength, respectively: by 8–9% with 100 °C; 26–27% at 150 °C; 37–38% at 200 °C; 42–44% at 250 °C and 50% at 300 °C. A decrease in the yield strength during high-speed heating in the temperature range studied is much faster ,compared with the change in the tensile strength. Hour exposure at 200 °C reduces the hardening effect on the yield strength from 340 MPa to 258 MPa, while the tensile strength decreases from 430 MPa to 385 MPa.


Geophysics ◽  
1966 ◽  
Vol 31 (1) ◽  
pp. 185-191 ◽  
Author(s):  
S. H. Yungul

The basic theory and objectives of telluric sounding (TS) are about the same as those of the well‐known method of magnetotelluric sounding (MTS) (Cagniard, 1953). Both methods make use of the natural electromagnetic phenomena known as geomagnetic micropulsations to obtain crude “resistivity logs” from the surface down to great depths, without drilling, if the subsurface has mild structures, low dips, and lateral continuity in the electrical resistivity. Let the x-y plane of the Cartesian coordinates represent the surface of the earth. With MTS, the field operation consists of simultaneously recording the time variations of an arbitrary x component of the electric field, [Formula: see text], called a tellurogram, and that of the y component of the magnetic field, [Formula: see text], called a magnetogram, both at the same point where the downward information is desired. The main difficulty is in the measurement of the magnetic field variations with sufficient accuracy. The measurement of the electric field variations is very simple and expeditious. TS bypasses this difficulty, because it does not require the measurement of the magnetic field. With TS, the field operation requires two electric field recording units. One of these units remains at a “base station” where the subsurface is known from a well log, while the second unit is placed at a “field station” where one wishes to explore the subsurface. Thus, for each sounding, one obtains two simultaneous tellurograms. These are Fourier analyzed. The ratios of the electric field amplitudes as a function of frequency, combined with the resistivity log at the base station, furnish the MTS‐type data at the field station that are interpreted in the usual manner to yield a crude resistivity log at the field station. The primary objective of TS is the exploration of sedimentary basins. It may be preferable to MTS in certain cases and vice versa; it is not meant to replace MTS. The theoretical basis and the procedures of TS are discussed in this paper.


2021 ◽  
Author(s):  
Jeanne Mercier de Lépinay ◽  
Tristan Fréville ◽  
Baptiste Kiemes ◽  
Luis Miguel Sanabria ◽  
Bruno Gavazzi ◽  
...  

<p>Magnetic mapping is commonly used in the academic and industrial sectors for a wide variety of objectives. To comply with a broad range of survey designs, the use of unmanned aerial vehicles (UAVs) has become frequent over the recent years. The majority of existing systems involves a magnetic acquisition equipment and its carrier (an UAV in this context) with no -or very few- connections between the two systems. Terremys is conceiving and optimizing UAVs specifically adapted for geophysical magnetic acquisitions together with the appropriate processing tools, and performs magnetic surveying in challenging environments. Terremys’ “Q6” system weights 2.5 kg in air, including UAV & instrumentation, and allows 30 min swarm or individual flights.</p><p>Rotary-wing UAVs are found to be the most adaptive systems for a wide range of contexts and constraints (extensive range of flights heights even with steep slopes). They offer more flight flexibility than fixed-wing aircrafts. One of the major problems in the use of rotary-wings UAVs for magnetic mapping is the magnetic field generated by the aircraft itself on the measurements. Towing the magnetic sensor 2 to 5 m under the aircraft reduces data positioning accuracy and decreases the performances of the UAV, which can be critical for high-resolution surveys. To overcome these problems, a deployable 1 m long boom is rigidly attached to the UAV. The UAV magnetic signal can be divided between 1-the magnetic field of the whole equipment and 2-a low to high frequency magnetic field mostly originating from the motors. The magnetization of the system is the principal source of magnetic noise. It is modelled and corrected by calibration-compensation processes permitted by the use of three-component fluxgate magnetometers. The time-varying noise depends on the motors rotational speed and is minimized by optimizing the UAV components and characteristics along with the boom’s length.</p><p>The final set-up is able to acquire magnetic data with a precision of 1 to 5 nT at any height from 1 to 150 m above ground level. The high-precision magnetic measurements are coupled with a centimetric RTK navigation system to allow for high-resolution surveying. The quality of the obtained data is similar to that obtained with ground or aerial surveys with conventional carriers and matches industrial standards. Moreover, Terremys’ systems merge in real-time data from all the aircraft instruments in order to integrate magnetic measurements, positioning information and all the UAV’s flight data (full telemetry) into a unique synchronized data file. This opens up many possibilities in terms of QA/QC, data processing and facilitates on-field workflows.</p><p>Case studies with diverse designs, flight altitudes and targets are presented to investigate the acquisition performances for different applications, as distinct as network positioning, archaeological prospecting or geological mapping.</p><p>The full integration of the magnetic sensor to the drone opens the possibility for implementation additional sensors to the system. The adjoining of other magnetic sensors would allow multi-sensors surveying and increases daily productivity. Diverse geophysical sensors can also be added, such as thermal/infrared cameras, spectrometers, radar/SAR.</p>


Sign in / Sign up

Export Citation Format

Share Document