scholarly journals POTENSI ATMOSFER DALAM PEMBENTUKAN AWAN KONVEKTIF PADA PELAKSANAAN TEKNOLOGI MODIFIKASI CUACA DI DAS KOTOPANJANG DAN DAS SINGKARAK 2010

2011 ◽  
Vol 12 (1) ◽  
pp. 9
Author(s):  
M Djazim Syaifullah

Kajian potensi atmosfer terhadap proses pembentukan dan pertumbuhan awan konvektifpada saat pelaksanaan Teknologi Modifikasi Cuaca (TMC) telah dilakukan dengan datapengamatan sounding dari stasiun Tabing Sumatera Barat. Sebanyak 330 buah datapengamatan harian jam 00Z dan 12Z dari Juni sampai dengan Nopember 2010 telahdianalisis. Dengan aplikasi RAOB analisis dilakukan untuk menentukan parameterdan indeks radiosonde sebagai penduga potensi atmosfer di wilayah tersebut. Hasilanalisis kandungan uap air yang diwakili oleh nilai Mixing Ratio dan PW menunjukkanbahwa selama bulan-bulan tersebut kandungan uap air cukup besar, presipitasi yangdihasilkan dipengaruhi oleh labilitas atmosfer yang diindikasikan oleh beberapa indeksradiosonde. Apabila labilitas pada hari itu cukup baik, maka peluang presipitasinyaakan semakin besar.Study the potential of the atmosphere on the formation and growth of convective cloudsduring the implementation of Weather Modification Technology (TMC) has been donewith observational data came from Padang, West Sumatra station. A further 330 piecesof observation data at 00Z and 12Z each day from June to November 2010 has beenanalyzed. By the RAOB application analysis conducted to determine the parameters and indices as sounding estimators of potential atmospheric in the region. Moisture content analysis results that represented by the value of Mixing Ratio (MR) and Precipitable Water (PW) showed that during the months of water vapor content is quite large, the rainfall was influenced by atmospheric unstability could indicated by several indexes. If unstability on the day was good enough, then the precipitation will be even greater.

Sensors ◽  
2018 ◽  
Vol 18 (8) ◽  
pp. 2526 ◽  
Author(s):  
Fei Yang ◽  
Jiming Guo ◽  
Junbo Shi ◽  
Lv Zhou ◽  
Yi Xu ◽  
...  

Water vapor is an important driving factor in the related weather processes in the troposphere, and its temporal-spatial distribution and change are crucial to the formation of cloud and rainfall. Global Navigation Satellite System (GNSS) water vapor tomography, which can reconstruct the water vapor distribution using GNSS observation data, plays an increasingly important role in GNSS meteorology. In this paper, a method to improve the distribution of observations in GNSS water vapor tomography is proposed to overcome the problem of the relatively concentrated distribution of observations, enable satellite signal rays to penetrate more tomographic voxels, and improve the issue of overabundance of zero elements in a tomographic matrix. Numerical results indicate that the accuracy of the water vapor tomography is improved by the proposed method when the slant water vapor calculated by GAMIT is used as a reference. Comparative results of precipitable water vapor (PWV) and water vapor density (WVD) profiles from radiosonde station data indicate that the proposed method is superior to the conventional method in terms of the mean absolute error (MAE), standard deviations (STD), and root-mean-square error (RMS). Further discussion shows that the ill-condition of tomographic equation and the richness of data in the tomographic model need to be discussed separately.


2018 ◽  
Vol 11 (5) ◽  
pp. 2735-2748 ◽  
Author(s):  
Guangyao Dai ◽  
Dietrich Althausen ◽  
Julian Hofer ◽  
Ronny Engelmann ◽  
Patric Seifert ◽  
...  

Abstract. We present a practical method to continuously calibrate Raman lidar observations of water vapor mixing ratio profiles. The water vapor profile measured with the multiwavelength polarization Raman lidar PollyXT is calibrated by means of co-located AErosol RObotic NETwork (AERONET) sun photometer observations and Global Data Assimilation System (GDAS) temperature and pressure profiles. This method is applied to lidar observations conducted during the Cyprus Cloud Aerosol and Rain Experiment (CyCARE) in Limassol, Cyprus. We use the GDAS temperature and pressure profiles to retrieve the water vapor density. In the next step, the precipitable water vapor from the lidar observations is used for the calibration of the lidar measurements with the sun photometer measurements. The retrieved calibrated water vapor mixing ratio from the lidar measurements has a relative uncertainty of 11 % in which the error is mainly caused by the error of the sun photometer measurements. During CyCARE, nine measurement cases with cloud-free and stable meteorological conditions are selected to calculate the precipitable water vapor from the lidar and the sun photometer observations. The ratio of these two precipitable water vapor values yields the water vapor calibration constant. The calibration constant for the PollyXT Raman lidar is 6.56 g kg−1 ± 0.72 g kg−1 (with a statistical uncertainty of 0.08 g kg−1 and an instrumental uncertainty of 0.72 g kg−1). To check the quality of the water vapor calibration, the water vapor mixing ratio profiles from the simultaneous nighttime observations with Raman lidar and Vaisala radiosonde sounding are compared. The correlation of the water vapor mixing ratios from these two instruments is determined by using all of the 19 simultaneous nighttime measurements during CyCARE. Excellent agreement with the slope of 1.01 and the R2 of 0.99 is found. One example is presented to demonstrate the full potential of a well-calibrated Raman lidar. The relative humidity profiles from lidar, GDAS (simulation) and radiosonde are compared, too. It is found that the combination of water vapor mixing ratio and GDAS temperature profiles allow us to derive relative humidity profiles with the relative uncertainty of 10–20 %.


2019 ◽  
Vol 11 (9) ◽  
pp. 1127 ◽  
Author(s):  
Fei Yang ◽  
Jiming Guo ◽  
Xiaolin Meng ◽  
Junbo Shi ◽  
Lv Zhou

With the development of Global Navigation Satellite System (GNSS) reference station networks that provide rich data sources containing atmospheric information, the precipitable water vapor (PWV) retrieved from GNSS remote sensing has become one of the most important bodies of data in many meteorological departments. GNSS stations are distributed in the form of scatters, generally, these separations range from a few kilometers to tens of kilometers. Therefore, the spatial resolution of GNSS-PWV can restrict some applications such as interferometric synthetic aperture radar (InSAR) atmospheric calibration and regional atmospheric water vapor analysis, which inevitably require the spatial interpolation of GNSS-PWV. This paper explored a PWV interpolation scheme based on the GPT2w model, which requires no meteorological data at an interpolation station and no regression analysis of the observation data. The PWV interpolation experiment was conducted in Hong Kong by different interpolation schemes, which differed in whether the impact of elevation was considered and whether the GPT2w model was added. In this paper, we adopted three skill scores, i.e., compound relative error (CRE), mean absolute error (MAE), and root mean square error (RMSE), and two approaches, i.e., station cross-validation and grid data validation, for our comparison. Numerical results showed that the interpolation schemes adding the GPT2w model could greatly improve the PWV interpolation accuracy when compared to the traditional schemes, especially at interpolation points away from the elevation range of reference stations. Moreover, this paper analyzed the PWV interpolation results under different weather conditions, at different locations, and on different days.


2017 ◽  
Author(s):  
Guangyao Dai ◽  
Dietrich Althausen ◽  
Julian Hofer ◽  
Ronny Engelmann ◽  
Patric Seifert ◽  
...  

Abstract. We present a practical method to continuously calibrate Raman lidar observations of the water vapor mixing ratio profile. The water vapor profile measured with the multiwavelength polarization Raman lidar PollyXT is calibrated by means of co-located AErosol RObotic NETwork (AERONET) sun photometer observations and Global Data Assimilation System (GDAS) temperature and pressure profiles. This method is applied to lidar observations conducted during the Cyprus Cloud Aerosol and Rain Experiment (CyCARE) in Limassol, Cyprus. We use the GDAS temperature and pressure profiles to retrieve the water vapor density. In the next step, the precipitable water vapor is obtained from the lidar observation. During CyCARE, 9 measurement cases with cloud-free and stable meteorological conditions are selected to calculate the precipitable water vapor from the lidar and the sun photometer observations. The ratio of these two precipitable water vapor values yields the water vapor calibration constant. The calibration constant for the PollyXT Raman lidar is 6.56 g kg−1 ± 0.72 g kg−1 (with a statistical uncertainty of 0.08 g kg−1 and an instrumental uncertainty of 0.72 g kg−1). To check the quality of the water vapor calibration, the water vapor mixing ratio profiles from the simultaneous nighttime observations with Raman lidar and Vaisala radiosonde sounding are compared. The correlation of the water vapor mixing ratios from these two instruments is determined by using all of the 19 simultaneous nighttime measurements during CyCARE. Excellent agreement with the slope of 1.01 and the R2 of 0.99 is found. One example is presented to demonstrate the full potential of a well calibrated Raman lidar. The relative humidity profiles from lidar, GDAS (simulation) and radiosonde are compared. It is found that the combination of water vapor mixing ratio and GDAS temperature profiles allow us to derive relative humidity profiles with good accuracy.


2019 ◽  
Vol 3 ◽  
pp. 741
Author(s):  
Wedyanto Kuntjoro ◽  
Z.A.J. Tanuwijaya ◽  
A. Pramansyah ◽  
Dudy D. Wijaya

Kandungan total uap air troposfer (precipitable water vapor) di suatu tempat dapat diestimasi berdasarkan karakteristik bias gelombang elektromagnetik dari satelit navigasi GPS, berupa zenith wet delay (ZWD). Pola musiman deret waktu ZWD sangat penting dalam studi siklus hidrologi khususnya yang terkait dengan kejadian-kejadian banjir. Artikel ini menganalisis korelasi musiman antara ZWD dan debit sungai Cikapundung di wilayah Bandung Utara berdasarkan estimasi rataan pola musimannya. Berdasarkan rekonstruksi sejumlah komponen harmonik ditemukan bahwa pola musiman ZWD memiliki kemiripan dan korelasi yang kuat dengan pola musiman debit sungai. Pola musiman ZWD dan debit sungai dipengaruhi secara kuat oleh fenomena pertukaran Monsun Asia dan Monsun Australia. Korelasi linier di antara keduanya menunjukkan hasil yang sangat kuat, dimana hampir 90% fluktuasi debit sungai dipengaruhi oleh kandungan uap air di troposfer dengan level signifikansi 95%. Berdasarkan spektrum amplitudo silang dan koherensi, kedua kuantitas ini nampak didominasi oleh siklus monsun satu tahunan disertai indikasi adanya pengaruh siklus tengah tahunan dan 4 bulanan.


2021 ◽  
Vol 13 (11) ◽  
pp. 2179
Author(s):  
Pedro Mateus ◽  
Virgílio B. Mendes ◽  
Sandra M. Plecha

The neutral atmospheric delay is one of the major error sources in Space Geodesy techniques such as Global Navigation Satellite Systems (GNSS), and its modeling for high accuracy applications can be challenging. Improving the modeling of the atmospheric delays (hydrostatic and non-hydrostatic) also leads to a more accurate and precise precipitable water vapor estimation (PWV), mostly in real-time applications, where models play an important role, since numerical weather prediction models cannot be used for real-time processing or forecasting. This study developed an improved version of the Hourly Global Pressure and Temperature (HGPT) model, the HGPT2. It is based on 20 years of ERA5 reanalysis data at full spatial (0.25° × 0.25°) and temporal resolution (1-h). Apart from surface air temperature, surface pressure, zenith hydrostatic delay, and weighted mean temperature, the updated model also provides information regarding the relative humidity, zenith non-hydrostatic delay, and precipitable water vapor. The HGPT2 is based on the time-segmentation concept and uses the annual, semi-annual, and quarterly periodicities to calculate the relative humidity anywhere on the Earth’s surface. Data from 282 moisture sensors located close to GNSS stations during 1 year (2020) were used to assess the model coefficients. The HGPT2 meteorological parameters were used to process 35 GNSS sites belonging to the International GNSS Service (IGS) using the GAMIT/GLOBK software package. Results show a decreased root-mean-square error (RMSE) and bias values relative to the most used zenith delay models, with a significant impact on the height component. The HGPT2 was developed to be applied in the most diverse areas that can significantly benefit from an ERA5 full-resolution model.


2021 ◽  
Vol 13 (3) ◽  
pp. 350
Author(s):  
Rosa Delia García ◽  
Emilio Cuevas ◽  
Victoria Eugenia Cachorro ◽  
Omaira E. García ◽  
África Barreto ◽  
...  

Precipitable water vapor retrievals are of major importance for assessing and understanding atmospheric radiative balance and solar radiation resources. On that basis, this study presents the first PWV values measured with a novel EKO MS-711 grating spectroradiometer from direct normal irradiance in the spectral range between 930 and 960 nm at the Izaña Observatory (IZO, Spain) between April and December 2019. The expanded uncertainty of PWV (UPWV) was theoretically evaluated using the Monte-Carlo method, obtaining an averaged value of 0.37 ± 0.11 mm. The estimated uncertainty presents a clear dependence on PWV. For PWV ≤ 5 mm (62% of the data), the mean UPWV is 0.31 ± 0.07 mm, while for PWV > 5 mm (38% of the data) is 0.47 ± 0.08 mm. In addition, the EKO PWV retrievals were comprehensively compared against the PWV measurements from several reference techniques available at IZO, including meteorological radiosondes, Global Navigation Satellite System (GNSS), CIMEL-AERONET sun photometer and Fourier Transform Infrared spectrometry (FTIR). The EKO PWV values closely align with the above mentioned different techniques, providing a mean bias and standard deviation of −0.30 ± 0.89 mm, 0.02 ± 0.68 mm, −0.57 ± 0.68 mm, and 0.33 ± 0.59 mm, with respect to the RS92, GNSS, FTIR and CIMEL-AERONET, respectively. According to the theoretical analysis, MB decreases when comparing values for PWV > 5 mm, leading to a PWV MB between −0.45 mm (EKO vs. FTIR), and 0.11 mm (EKO vs. CIMEL-AERONET). These results confirm that the EKO MS-711 spectroradiometer is precise enough to provide reliable PWV data on a routine basis and, as a result, can complement existing ground-based PWV observations. The implementation of PWV measurements in a spectroradiometer increases the capabilities of these types of instruments to simultaneously obtain key parameters used in certain applications such as monitoring solar power plants performance.


Sign in / Sign up

Export Citation Format

Share Document