scholarly journals COUPLING BEAM DESIGN WITH SPECIAL MOMENT FRAME AND SPECIAL REINFORCED CONCRETE SHEAR WALLS

Neutron ◽  
2019 ◽  
Vol 18 (2) ◽  
pp. 28-41
Author(s):  
Agyanata Tua Munthe ◽  
Muklish Nalahuddin

An Earthquake is on of the natural phenomena that cannot be avoided or cannot be prevented by its appearance which is very difficult to accurately predict both from the time and place of its occurrence. Shear wall system is used to increase the sitffness of many multi-storey building, in this case building that have more than 20 floors. Building structures with shear wall as retaining element of lateral force generally have good performance during an earthquake. Coupling beam is an connecting beam betweem two shear walls, this beam makes a series of shear walls works as a system that is able to withstand earthquake force. Coupling beam also make the working structure rigid and absorbs energy due to the very high rigidity of the coupling beam with shear wall behaving link two free cantilevers. Coupling beam is considered to be able to transmit shear force from one wall to another so that it can withstand large structural deformation. Structure design material strenght for concrete  fc’ 35MPa ~ fc 55’MPA and rebar (D10 & D13) using fy 520MPa and fy 420MPa for diameter >16mm. While the regulations used are SNI 1726: 2012, SNI 1727: 2013, and SNI 2847: 2013. Structural loading is given according to loading rules which are then analyzed using ETABS 2016 software.

2010 ◽  
Vol 163-167 ◽  
pp. 1736-1743
Author(s):  
Jun Han ◽  
Ying Min Li ◽  
Wei Xian Chen ◽  
Wei Jiang ◽  
Wei Zhao

Reinforced concrete frame-shear wall structure is a double resistance to lateral force system, in which the frames and shear walls work cooperatively and the distributive rule of the earthquake force varies with different earthquake actions. To ensure the frames bear the increasing earthquake shear force and play a role of second defense line due to the internal force re-distribution after the stiffness degradation of shear walls, the elastic design earthquake shear force of the frames should be adjusted. However the adjustment measures applied in Chinese code are proposed according to the design experiences of engineers and lack of the theoretical and computational analytical basis. Moreover, there is a dispute about ignoring the rule of the shear force redistribution along storey or not, it is necessary to further evaluate the rationality of the measures in the code. In this paper, based on a 3-D precise nonlinear frame-shear wall structure analysis model, the re-distributive rule of the internal force under strong earthquake was studied and the adjustment measures of earthquake force in the frames were checked. Finally, some design suggestions were proposed.


2021 ◽  
Vol 1 (1) ◽  
pp. 24-34
Author(s):  
Evantianus Sansujaya ◽  
Jusuf J.S. Pah ◽  
I Made Udiana

The main principle of designing the multi-storey building is increasing the building strength on lateral force. The higher the building, then the more vulnerable the building in resisting the lateral force, such as earthquake force. In structure design in multi-storey building, there are 2 systems lateral force restraint that often used, that are frame that use shear wall and frame without shear wall. The purpose of this research is to analyze the effect of shear wall placement with respect to structure deflection as an effect of quake load also to find out the sensitivity of the adding the amount of shear wall on decreasing rate of structure deflection as an effect of quake load, that the calculation of quake load effect done by use the Equivalent Static Analysis Method. The result of the analysis obtained the structure deflection decreases with the increasing of the amount of shear wall and the average of decreasing rate of structure deflection for every addition of 1% shear wall is 1.97% also the layout of shear wall placement very react on structure deflection alteration.


2021 ◽  
Vol 933 (1) ◽  
pp. 012009
Author(s):  
M A Rahman ◽  
M Teguh ◽  
F Saleh

Abstract Multi-story buildings are designed to withstand lateral forces against earthquakes. There are several ways to strengthen multi-story building structures. One way is to add a dual system, namely the shear wall or the bracing systems. Shear walls and bracing techniques can resist earthquake forces in vertical and horizontal directions that occur in building structures. This study compares the results of the structural analysis to three structural models. The 10- story of the structural response used in the research includes the story drift, base shear, displacement, and structural behavior due to the earthquake force. Model 1 is a general structure without the shear wall and bracing systems, Model 2 is a structure completed with L-shear walls, and Model 3 is a structure installed with the X-bracing system. The analyses of three Models were carried out by SAP2000 software. The results show that the slightest interstory drift occurs in Model 2, namely 0.041 mm. The decrease in deviation value that arises in Model 2 is 12.6 mm, with 34.35%. In Model 1, the story drift exceeds the allowable limit, so that with such a model, it is not feasible. Therefore, it is necessary to add shear walls or a bracing system.


2021 ◽  
Vol 885 ◽  
pp. 127-132
Author(s):  
Sarmad Shakeel ◽  
Alessia Campiche

The current edition of Eurocode 8 does not cover the design of the Cold-Formed steel (CFS) building structures under the seismic design condition. As part of the revision process of Euro-code 8 to reflect the outcomes of extensive research carried out in the past decade, University of Naples “Federico II” is involved in the validation of existing seismic design criteria and development of new rules for the design of CFS systems. In particular, different types of Lateral Force Resisting System (LFRS) are analyzed that can be listed in the second generation of Eurocode 8. The investigated LFRS’s include CFS strap braced walls and CFS shear walls with steel sheets, wood, or gypsum sheathing. This paper provides the background information on the research works and the reference design standards, already being used in some parts of the world, which formed the basis of design criteria for these LFRS systems. The design criteria for the LFRS-s common to CFS buildings would include rules necessary for ensuring the dissipative behavior, appropriate values of the behavior factor, guidelines to predict the design strength, geometrical and mechanical limitations.


Author(s):  
Guoqiang LI ◽  
Mengde PANG ◽  
Feifei Sun ◽  
Liulian LI ◽  
Jianyun SUN

Coupled shear walls are widely used in high rise buildings, since they can not only provide efficient lateral stiffness but also behave outstanding energy dissipation ability especially for earthquake-resistance. Traditionally, the coupling beams are made of reinforced concrete, which are prone to shear failure due to low aspect ratio and greatly reduce the efficiency and ability of energy dissipation.  For overcoming the shortcoming of concrete reinforced coupling beams (RCB), an innovative steel coupling beams called two-level-yielding steel coupling beam (TYSCB) is invented to balance the demand of stiffness and energy dissipation for coupled shear walls. TYSCBs are made of two parallel steel beams with yielding at two different levels.  To verify and investigate the aseismic behaviour improvement of TYSCB-coupled shear walls, two 1/3 scale, 10-storey coupled shear wall specimens with TYSCB and RCB were tested under both gravity and lateral displacement reversals. These two specimens were designed with the same bearing capacity, thus to be easier to compare. The experimental TYSCB specimen demonstrated more robust cyclic performance. Both specimens reached 1% lateral drift, however, the TYSCB-coupled shear wall showed minimal strength degradation. Additionally, a larger amount of energy was dissipated during each test of the TYSCB specimen, compared with the RCB specimen. Based on the experimental results, design recommendations are provided.


2021 ◽  
Vol 11 (1) ◽  
pp. 6043-6063
Author(s):  
Ali Jafarian ◽  
Seyed Babak Jafarian

Considering the increase in the current construction process and the future needs of Iran, the necessity to use high-rise buildings for reduction in urbanization costs and optimal use of land will be inevitable in the future. The performance of steel plate shear wall system as a modern global system, which has an effective application in high-rise buildings and also brings economic benefits compared to previous systems, is evaluated in this study. Steel Plate Shear Walls (SPSW) are a new type of system resistant to wind and earthquake lateral loads, which dates back to the 1970s. In this research, eight samples of shear wall with various stiffening arrangements and sections with ST37 and ST52 alloys are modeled. To evaluate the nonlinear dynamic analysis, the samples are subjected to the San Fernando earthquake force and are modeled and analyzed by ABAQUS software based on the finite element theory. The results of analyzing the samples indicate better performance of the system with stiffener in both vertical and horizontal directions. Also, the use of sections with ST52 alloy has improved the performance of the shear wall by approximately 40%.


2021 ◽  
Vol 4 (1) ◽  
pp. 16
Author(s):  
Leonardus Setia Budi Wibowo ◽  
Dermawan Zebua

Indonesia is one of the countries in the earthquake region. Therefore, it is necessary to build earthquake-resistant buildings to reduce the risk of material and life losses. Reinforced Concrete (RC) shear walls is one of effective structure element to resist earthquake forces. Applying RC shear wall can effectively reduce the displacement and story-drift of the structure. This research aims to study the effect of shear wall location in symmetric medium-rise building due to seismic loading. The symmetric medium rise-building is analyzed for earthquake force by considering two types of structural system. i.e. Frame system and Dual system. First model is open frame structural system and other three models are dual type structural system. The frame with shear walls at core and centrally placed at exterior frames showed significant reduction more than 80% lateral displacement at the top of structure.


2021 ◽  
Vol 23 (2) ◽  
pp. 167-176
Author(s):  
Sekar Mentari ◽  
Rosi Nursani

Indonesia is one of the countries that is prone to earthquakes. In addition to the dead loads, superimposed dead loads, and live loads, the design of buildings in Indonesia must be concerned with earthquake loads. Installing shear walls in the building structure as the Special Moment Frame Dual System is one of a solution to withstand earthquake loads. However, the location of shear walls must be considered, especially in buildings with horizontal irregularities. This study aims to determine the optimum location of the shear walls in a 10-storey building that has U-configuration with dynamic earthquake loads. This research is a numerical simulation ran by modelling the structure with software. To know the effect of the shear wall’s location on a building, several variations of the shear wall configuration with different positions have been conducted. It can be seen the lateral displacement of each floor and the shear force are the response structure to withstand the dynamic earthquake loads. Shear walls that are located close to the center of mass of the building are the optimum variation because the position of the shear wall is the closest to the core area of the building, which is the rotational axis of the building.


2012 ◽  
Vol 06 (01) ◽  
pp. 1250004 ◽  
Author(s):  
SWAPNIL B. KHARMALE ◽  
SIDDHARTHA GHOSH

The thin unstiffened steel plate shear wall (SPSW) system has now emerged as a promising lateral load resisting system. Considering performance-based design requirements, a ductility-based design was recently proposed for SPSW systems. It was felt that a detailed and closer look into the aspect of seismic lateral force distribution was necessary in this method. An investigation toward finding a suitable lateral force distribution for ductility-based design of SPSW is presented in this paper. The investigation is based on trial designs for a variety of scenarios where five common lateral force distributions are considered. The effectiveness of an assumed trial distribution is measured primarily on the basis of how closely the design achieves the target ductility ratio, which is measured in terms of the roof displacement. All trial distributions are found to be almost equally effective. Therefore, the use of any commonly adopted lateral force distribution is recommended for plastic design of SPSW systems.


Sign in / Sign up

Export Citation Format

Share Document