Gluten-Free Dry Mixtures with Rice and Amaranth for Children over Three Years Old with Gluten Intolerance

Food Industry ◽  
2020 ◽  
Vol 5 (1) ◽  
pp. 23-31
Author(s):  
Sergey Urubkov ◽  
Svetlana Khovanskaya ◽  
Ekaterina Pyrieva ◽  
Olga Georgieva ◽  
Stanislav Smirnov

Diet therapy is one of the main approaches to the treatment of a wide range of diseases of the digestive system. The treatment effectiveness of celiac disease depends on how strictly the patient adheres to a gluten-free diet. It is often disrupted due to the limited range of recommended foods and dishes, especially for children who are particularly sensitive to dietary restrictions. In this case, the development of new types of specialized gluten-free products is relevant, allowing to expand the diet both in terms of nutritional value and taste diversity. This study concerns the recipe developments of dry gluten-free mixtures using rice and amaranth with the inclusion of fruit and vegetable and berry raw materials intended for the nutrition of children over three years old suffering from celiac disease. When developing the recipes, researchers used various combinations of rice and amaranth flour, as well as fruit and vegetable powders. The rice flour composition varied in the range from 15 to 75%; amaranth – from 15 to 45%; fruit and vegetable and berry powders – up to 10%. The finished product was gluten-free cookies, muffins, pancakes made of rice and amaranth. Organoleptic evaluation showed that the studied samples of gluten-free cookies have high quality characteristics, have a pleasant taste and aroma. According to the calculated data, specialized gluten-free dry mixtures intended for children over three years with celiac disease can serve as an important source of: vegetable carbohydrates – from 26.81 to 55.19 g / 100g of finished products; protein – from 4.06 to 11.82 g/100g of finished products; dietary fiber – from 3.82 to 6.36 g/100g of finished products; and energy – from 158.12 to 333.96 kcal/100g of finished products) The developed recipess of gluten-free products can help to provide children with an adequate amount of nutrients and energy.

2020 ◽  
pp. 168-177
Author(s):  
S. Tretiakova ◽  
V. Voitovska ◽  
Y. Yevchuk ◽  
L. Kononenko

The article highlights a complex of studies and a comparative assessment of flour of various varieties and hybrids of chia and sorghum. It was found that, in terms of their chemical composition, these crops are advisable to use as raw materials for the production of gluten free products. To live a full life, people with celiac disease must constantly consume gluten-free foods. Rice, buckwheat, millet, corn are considered safe, and amaranth, quinoa, sago, Setaria italica, sorghum are also less common in Ukraine. To obtain high-quality gluten-free products, it is important to choose the right raw materials and their ratio in chemical composition. Therefore, it is advisable to study and compare the chemical composition of sorghum and chia flour. The aim of the research was to study and compare the chemical composition of whole grain sorghum flour versus chia for use in the food industry as a source of gluten-free nutrition. The experimental part of the work was carried out during 2017–2019 in the hybrids of grain sorghum of Ukrainian (Lan 59), French (Targga) and American (Prime) selection and Spanish sage (chia) (Salvia hispanica) varieties: Salba, Tzotzol, Iztac. Whole grain sorghum and chia flours were obtained from their grains and various chemical constituents were determined. Comparative analysis of the chemical composition of sorghum and chia flour allows us to note that, on average, the protein content in sorghum was in the range from 9.53 to 10.6 g, in chia varieties from 14.98 to 16.52 g, which is on average five, 8 g more. The data on the determination of fats show that in the hybrid of sorghum of Ukrainian selection, this indicator was 2.8 g, French 1.24 g, and American – 3.3 g, as for chia, this indicator is much higher and varies by varieties from 30, 12 to 30.71 g. Starch is the main component of flour and in sorghum; its mass fraction is more in the Prime hybrid 63.7 g, Lan 59 – 63.1 g and the smallest amount in Targga – 62.7 g. It has been determined that grain sorghum and chia flour has a high content of B vitamins, which act as coenzymes of a number of metabolic processes. In addition to the vitamins listed above, sorghum flour contains vitamins B9, B5, B6 as well. Chia varieties have high levels of micro- and microelements. Key words: flour, vitamins, microelements, proteins, fats, carbohydrates, celiac disease, sorghum, chia.


Author(s):  
Sonaksh Chandra

Abstract-Gluten intolerance /allergies is now a silently rising problem world-wide. Gluten is a protein composite found in cereals, wheat, rice, barley and certain oat varieties. It also causes Celiac disease which is an autoimmune disease (most severe form of gluten intolerance), resulting from glutenintoleranceandisbasedongeneticintolerance. The only therapeutic treatment for the patients with gluten allergies and celiac disease is a strict gluten free diet. Rising demand for gluten free products is a task for the bakers and manufacturers to eliminate gluten completely from their products which is technically not possible. This draws the attention to the fact that mandatory analysis in this field is required. The aim of this work is to find a way to reduce the gluten content in the available materials, and also to find the source of gluten contamination after processing of raw materials. It wasnotedthatgarlicandsugarcontainingcombination were found effective and showed decrease in gluten content and that they were better additivities in the processing process than rest of others.


Food Industry ◽  
2020 ◽  
Vol 5 (4) ◽  
pp. 60-67
Author(s):  
Sergey Urubkov ◽  
Svetlana Khovanskaya ◽  
Stanislav Smirnov

The effectiveness of treating gluten intolerance directly depends on the patient adherence to a gluten-free diet, which they often violate due to the limited range of recommended foods and dishes. First of all, this applies to children. The development of new types of gluten-free products using non-traditional grain raw materials has become particularly relevant, giving the possibility to expand the diet both in terms of nutritional value and taste diversity. Mainly due to the intake decrease of grain-based products, children are lack of such important minerals as potassium, magnesium, selenium, etc. The mineral elements contained in cereals are important for the growing child body, since they are involved in many important biochemical processes. The article purpose is to determine the minerals (Ca, Mg, K, Na, P, Fe, Cu, Zn, Mn, Se, Co, Pb, Ni, Mo, Cd, As, Hg) content in buckwheat and amaranth flour, as well as in products obtained from flour mixtures of these cultures. According to the obtained data on the macro-and microelements content in gluten-free products, a significant part of the minerals in the considered flour samples is potassium: 371 mg/100 g – for amaranth flour and 405 mg/100 g – for buckwheat flour. High magnesium content was in buckwheat (239.9 mg/100 g) and amaranth (202.5 mg/100 g) flour. There was a low calcium content in both samples: 69.0 mg/kg in amaranth and 62.0 mg/kg in buckwheat flour. Amaranth flour is superior to buckwheat in the content of trace elements such as copper (319 mcg/100 g), zinc (2495 mcg/100 g) and selenium (515.4 mcg/100 g). Buckwheat flour contains more phosphorus (263.3 mg/100 g), potassium (405.9 mg/100 g), magnesium (239.9 mg/100 g), and copper (334 mcg/100 g) than amaranth flour. According to the results obtained, amaranth and buckwheat flour can be classified as good sources of selenium – 515.4 and 404.0 mcg/100 g, respectively. The mineral substances content in pancakes made from mixtures of amaranth flour and native buckwheat flour decreased within 3.0–23.0 % of their content in the original flour. The calculation of the recommended daily requirement showed that consuming pancakes portion (45 g) by school-age children meet their daily need, %, on average: in magnesium – by 35.3; in potassium – by 9.5; in iron – by 26.4; in copper – by 19.6; in selenium – by 27.7.


Author(s):  
Thomas J Littlejohns ◽  
Amanda Y Chong ◽  
Naomi E Allen ◽  
Matthew Arnold ◽  
Kathryn E Bradbury ◽  
...  

ABSTRACT Background The number of gluten-free diet followers without celiac disease (CD) is increasing. However, little is known about the characteristics of these individuals. Objectives We address this issue by investigating a wide range of genetic and phenotypic characteristics in association with following a gluten-free diet. Methods The cross-sectional association between lifestyle and health-related characteristics and following a gluten-free diet was investigated in 124,447 women and men aged 40–69 y from the population-based UK Biobank study. A genome-wide association study (GWAS) of following a gluten-free diet was performed. Results A total of 1776 (1.4%) participants reported following a gluten-free diet. Gluten-free diet followers were more likely to be women, nonwhite, highly educated, living in more socioeconomically deprived areas, former smokers, have lost weight in the past year, have poorer self-reported health, and have made dietary changes as a result of illness. Conversely, these individuals were less likely to consume alcohol daily, be overweight or obese, have hypertension, or use cholesterol-lowering medication. Participants with hospital inpatient diagnosed blood and immune mechanism disorders (OR: 1.62; 95% CI: 1.18, 2.21) and non-CD digestive system diseases (OR: 1.58; 95% CI: 1.42, 1.77) were more likely to follow a gluten-free diet. The GWAS demonstrated that no genetic variants were associated with being a gluten-free diet follower. Conclusions Gluten-free diet followers have a better cardiovascular risk profile than non-gluten-free diet followers but poorer self-reported health and a higher prevalence of blood and immune disorders and digestive conditions. Reasons for following a gluten-free diet warrant further investigation.


Antioxidants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 807
Author(s):  
Dorota Gumul ◽  
Rafał Ziobro ◽  
Jarosław Korus ◽  
Marek Kruczek

Gluten-free products based on starch and hydrocolloids are deficient in nutrients and do not contain pro-health substances. Therefore, they should be enriched in raw materials naturally rich in antioxidants, especially if they are intended for celiac patients, prone to high oxidative stress. Apart from the traditionally used pseudo-cereals, seeds, vegetables and fruits, innovative substrates such as the by-product (especially in Poland) dry apple pomace could be applied. The study material consisted of gluten-free bread enriched with apple pomace. The content of individual polyphenols, the content of total polyphenol and flavonoids, and also the antioxidant potential of the bread were determined by the UPLC-PDA-MS/MS methods. It was observed that apple pomace was a natural concentrate of bioactive substances from the group of polyphenols. In summary, gluten-free bread with 5% content of apple pomace showed the highest organoleptic scores and contained high levels of phenolic compounds. The values of total phenolic content, and the amounts of flavonoids, phenolic acids and phloridzin in this bread were 2.5, 8, 4 and 21 times higher in comparison to control.


2020 ◽  
Vol 50 (2) ◽  
pp. 232-241
Author(s):  
Sergey Urubkov ◽  
Svetlana Khovanskaya ◽  
Stanislav Smirnov

Introduction. Diet therapy is one of the main approaches to the treatment of various diseases of the digestive system. A strict lifetime diet is the main method of treatment for gluten intolerance. However, young patients, who are particularly sensitive to dietary restrictions, often fail to follow the diet due to the limited menu of recommended foods and dishes. The diet for children with gluten intolerance should include a sufficient amount of gluten-free grain-based products. They provide children with carbohydrates, dietary fibers, vegetable proteins, fats, B vitamins, and minerals, e.g. potassium, magnesium, selenium, etc. In this regard, it is urgent to develop new types of specialized gluten-free products to expand the diet both in terms of nutritional value and taste diversity. Study objects and methods. The research is part of a project on the development of dry gluten-free mixes based on buckwheat and amaranth with fruit, vegetable, and berry raw materials. The new formulations are intended for children older than three years of age with gluten intolerance. The research objective was to study the main nutrients in amaranth and buckwheat flours. The study involved the method of infrared spectroscopy using a SpectraStar 2500 analyzer. The data obtained made it possible to calculate the nutritional and energy value of products based on amaranth and buckwheat flours, as well as fruit, vegetable, and berry powders intended for children older than three years of age with gluten intolerance. Results and discussion. Amaranth flour proved to be rich in protein (13.4%), lipids (5.1%), and ash (2.8%). Native buckwheat flour contained 7.5% of protein, 3.6% of lipids, and 1.4% of ash. The carbohydrate content appeared approximately the same in both samples (56–58%). The dry gluten-free mixes can serve as an important source of vegetable protein (up to 9.44 g per 100 g of the finished product), carbohydrates (up to 40.08 g per 100 g of the finished product, and energy (from 158.12 to 221.85 kcal per 100 g of the finished product). Conclusion. The high nutritional and biological value of amaranth and buckwheat flours, as well as fruit, vegetable, and berry powders, confirmed the prospect of using them as the main components for functional foods. Amaranth and buckwheat contain no gluten but are rich in protein, amino acids, saturated and unsaturated fatty acids, minerals, and biologically active elements, which makes them an important source of nutrition for children with gluten intolerance.


Author(s):  
Sergey Urubkov ◽  
Svetlana Khovanskaya ◽  
Stanislav Smirnov

Introduction. For patients with gluten intolerance, diet therapy is the main method of treatment. However, gluten-free diets are found lacking in many important components. Children that fail to consume neccessary nutrients or have problems with their absorption tend to be physically retarded. Gluten-free diet may increase the risk of autoimmune diseases, especially type I diabetes. Therefore, products for children with celiac diseases should be both gluten-free and have adequate bioavailability of carbohydrates. This article features the chemical composition of amaranth, the geometric structure of starch grains, and its effect on the formation of colloidal solutions. It also compares the glycemic index (GI) of amaranth with other gluten-free grains, i.e. rice, buckwheat, and corn. Study objects and methods. The research featured native amaranth grain (Amaranthus cruentus) (Mexico), puffed amaranth kernels (Mexico), and coarse granular amaranth flour (Mexico). Results and discussion. Amaranth grain contains 12.5–23% of protein, 50.7–77.0% of carbohydrates, 6.0–8.0% of lipids, 10.5–18.3% of dietary fiber, and 2.5–3.5% of minerals. The GI of amaranth and its products were compared with similar values of other glutenfree crops, namely rice, buckwheat, and corn. Amaranth grain and its products demonstrated a higher GI, if compared with other gluten-free grain raw materials. The GI of amaranth grain was 87, the GI of the puffed amaranth kernels was 101, and the GI of the coarse granular amaranth flour was 97. Amaranth starch is easy to digest, which is mainly due to the high content of amylopectin (88 to 98%), since amylopectin breaks down faster than amylose. The relatively small size of starch granules (1.5–3.0 microns) increases the attack capacity of enzymes. These properties make amaranth starch glycemic, or low-resistant, which means that amaranth is easily digested and possesses stability to retrogradation. Conclusion. The unique nutritional and functional properties of amaranth gluten-free products can significantly improve the diet of children with gluten intolerance. However, amaranth starch and its products have a high GI. Hence, it is necessary to control the percentage of these components in formulations and be careful with the selection of additional components and their impact on the total GI.


2020 ◽  
Vol 246 (11) ◽  
pp. 2147-2160
Author(s):  
Małgorzata Gumienna ◽  
Barbara Górna

Abstract This article consists of a study of the literature and an assessment of available data on the production of gluten-free beer and its constituents. The article shows how the FAO/WHO Codex Alimentarius Commission for Nutrition and Foods for Special Dietary Uses defines celiac disease, gluten-free products, and gluten-free beer. It describes diet-dependent diseases, which require a gluten-free diet, and groups of potential consumers of gluten-free beer. This article describes the use of oats as a raw material for the production of brewing malt and its usefulness in the production of beer. It specifies how the technological process of standard beer production needs to be modified so that the product meets the requirements of patients with celiac disease. The article also provides an overview of literature data on the production of gluten-free beer from pseudocereal malts, such as sorghum malt, buckwheat malt, amaranth malt, and quinoa malt.


2012 ◽  
Vol 26 (5) ◽  
pp. 436-444 ◽  
Author(s):  
G. Zuccotti ◽  
V. Fabiano ◽  
D. Dilillo ◽  
M. Picca ◽  
C. Cravidi ◽  
...  

2020 ◽  
Vol 10 (5) ◽  
pp. 6565-6576 ◽  

Gluten is common term refered to proteins found in wheat and related grains which is responsible for elasticity of dough and chewy texture of final product. But gluten causes problems to patients suffering from celiac diseases hence gluten free diet is the only existing treatment for celiac disease today. This study was conducted with an objective to create a dough system composed of pearl millet and flaxseed proteins that would be able to reproduce the same rheological and textural properties as wheat gluten in cookie making. A dough mixture comprising of pearl millet and flaxseed were used to prepare gluten free cookies. Psyllium husk was used to provide gelling property to the gluten free dough. Different dough samples with varying concentrations of flaxseed flour (i.e. 15g, 17g, 20g, and 22.5g) were prepared and thus optimized by rheological testing of dough samples. The cookies formulated from different dough samples with varying flaxseed concentrations were tested for rheological properties and texture profile analysis of the formulations was done. This study indicated that it is feasible to develop gluten free cookies as a commercial snack towards the fast and emerging need of gluten free products for the patients suffering from celiac disease.


Sign in / Sign up

Export Citation Format

Share Document