scholarly journals Properties of Epoxy-Asphalt Pavement Mixture for Bridge Decks

2018 ◽  
Vol 21 (1) ◽  
pp. 20 ◽  
Author(s):  
Amjad H. Albayati ◽  
Esraa T. Al-Azawee

Improving the ability of asphalt pavement to survive the heavily repeated axle loads and weathering challenges in Iraq has been the subject of research for many years. The critical need for such data in the design and construction of more durable flexible pavement in bridge deck material is paramount. One of new possible steps is the epoxy asphalt concrete, which is classified as a superior asphalt concrete in roads and greatly imparts the level of design and construction. This paper describes a study on 40-50 penetration graded asphalt cement mixed with epoxy to produce asphalt concrete mixtures. The tests carried out are the Marshall properties, permanent deformation, flexural fatigue cracking and moisture damage. Epoxy asphalt mixes performed better on resistance to fatigue and permanent deformation. They also performed significantly better on low-temperature properties and resistance to moisture damage. The addition of 30 percent of epoxy (by weight of asphalt cement) resulted in increase of Marshall stability by 39.8 percent, improve the tensile strength ratio by 22.9 percent, lowering both the rate of permanent deformation by 26.8 percent and the fatigue accumulation coefficient by 53.5 percent, in comparison with control HMA. Based on the above findings, it is recommended to use epoxy asphalt mixes as an optimal material for paving bridges deck in Iraq since it showed good prospects for this application due to the valuable performance and durability improvement.

2015 ◽  
Vol 4 (1) ◽  
pp. 1-19 ◽  
Author(s):  
Ahmed F. Al-Tameemi ◽  
Yu Wang ◽  
Amjad Albayati

Abstract Flexible or asphalt concrete pavement is the paving system most widely adopted all over the world. It has been recognized that there are many different types of the factors affecting the performance and durability of asphalt concrete pavement, including the service conditions, such as: the variation of temperature from mild to extremes and the repeated excessive axle loading as well as the inadequate quality of the raw materials. All of these when combined together are going to accelerate the occurrence of distresses in flexible pavement such as permanent deformation and fatigue cracking. As the result, there has an urgent need to enhance the ability of asphalt concrete mixture to resist distresses happened in pavement. Use of additives is one of the techniques adopted to improve pavement properties. It has been found that hydrated lime might be one of the effective additives because it is widely available and relatively cheap compared to other modifiers like polymers. This paper presents an experimental study of the hydrated-lime modified asphalt concrete mixtures. Five different percentages of the hydrated lime additive were investigated, namely (1, 1.5, 2, 2.5 and 3 percent). The hydrated lime additive was used as partial replacement of limestone filler by total weight of the aggregate. The designed Hot Mix Asphalt (HMA) concretes are for the application of three pavement courses, i.e. Surface, Leveling and Base. These mixtures are designed and tested following Marshall procedure and uniaxial repeated loading to evaluate permanent deformation at different temperatures of 20°C, 40°C and 60°C. The experimental results show that the addition of hydrated lime as a partial replacement of ordinary limestone mineral filler results a significant improvement on mechanical properties and the resistant to permanent deformation of the designed asphalt concrete mixtures.


2012 ◽  
Vol 39 (8) ◽  
pp. 897-905 ◽  
Author(s):  
Aziz Salifu ◽  
Curtis Berthelot ◽  
Ania Anthony ◽  
Brent Marjerison

Many Saskatchewan provincial highways exhibit permanent deformation that is mostly attributed to reduction in air voids in hot mix asphalt concrete surfacing. The Saskatchewan Ministry of Highways and Infrastructure (MHI) currently use the Marshall compaction method for hot mix asphalt concrete (HMAC) design and placement quality control and quality assurance. It has been found that the Marshall compaction method does not accurately predict field air voids. Therefore, MHI identified the need to evaluate the SuperpaveTM gyratory compaction method to predict field air voids of typical Saskatchewan asphalt mixes. This paper presents a summary of laboratory and field volumetric as well as rapid triaxial mechanistic material properties of typical Saskatchewan asphalt mixes. This research considered seven asphalt mixes from the Radisson Specific Pavement Study (SPS)-9A test site comprising two conventional Saskatchewan Marshall Type 71 mixes, five SuperpaveTM mixes, and a SuperpaveTM recycled mix. This research determined that Marshall compaction and the gyratory compaction at 1.25° gyration angle underestimate the collapse of field air voids. This research also showed that the gyratory compaction method at 2.00° angle of gyration more accurately predicted field air voids of the asphalt mixes constructed as part of test site.


Author(s):  
Valerii Vyrozhemskyi ◽  
Ivan Kopynets ◽  
Oleksii Sokolov

One of the main reasons of low durability of asphalt concrete are the properties of bitumen which is the most sensitive of all its components to the action of external factors. As thermoplastic material, bitumen becomes soft at high summer temperatures leading to rutting, shear and sags formation. At low winter time temperatures it becomes fragile and rigid that due to low-temperature compression of asphalt pavement causes the occurrence of transverse cracks. The most effective direction for increasing the durability and roughness of asphalt pavement is changing the bitumen behavior by various types of additives modification. Among the issues related to all known modifiers, the least studied is the issue of using thermosetting polymers, namely, epoxy components. The main problem with the use of epoxy resins for modification is that under the influence of high process temperatures a rapid hardening of the epoxy resin after combining with the hardener occurs. Such behavior of epoxy components limits the temperature modes and the duration of process operations for the production, transportation and placement of epoxy asphalt mixtures. In this paper, the results of the study of epoxy-asphalt concrete obtained using the cut-back bitumen are presented. The dilution of bitumen allows reducing the process temperatures of the production of epoxy asphalt concrete mixtures which increases the time for their transportation and compaction. As a result of hardening of the epoxy resin, over time, a significant increase in the strength of the epoxy asphalt concrete occurs at all temperatures. The rate of hardening of epoxy asphalt depends on the temperature of the environment. As the temperature rises, the reaction rate between the epoxy resin and the hardener increases, which is reflected in the growth of the strength of the epoxy asphalt concrete at all test temperatures, the more intense evaporation of the solvent and, consequently, the growth of water saturation and the decrease in average density. Keywords. epoxy binder, epoxy asphalt concrete, epoxy resin, modification, cut-back bitumen.


2011 ◽  
Vol 225-226 ◽  
pp. 714-719
Author(s):  
Xiao Ying Ouyang

According to moisture damage phenomenon of hunan province expressway, this study choses Lin-Chang, Lei-Yi, Heng-Zao as research object.The parameters of the pavement, such as void, thickness, asphalt-aggregate ratio and gradation of the asphalt concrete are measured, explored water damaged reasons in hunan specific hot and humid environment and puts forward the prevention countermeasures of asphalt pavement water damage-OGFC.


2010 ◽  
Vol 37 (3) ◽  
pp. 489-495
Author(s):  
Curtis Berthelot ◽  
Diana Podborochynski ◽  
Ania Anthony ◽  
Brent Marjerison

This paper provides a performance comparison of mechanistic laboratory and field rutting performance of four asphalt concrete mixes constructed in 1996 at a Strategic Highway Research Program SPS-9A test site located in Saskatchewan. The asphalt mixes included two Saskatchewan Type 70 Marshall mixes and two coarse graded Superpave™ mixes and employed 150–200A and 200–300A penetration grade asphalt cement binders. The triaxial frequency sweep characterization determined that the Superpave™ mix yielded improved mechanistic structural constitutive properties when compared to the Saskatchewan Type 70 mix. In addition, improved mechanistic structural properties were observed with the mixes employing 150–200A (PG 58-28) asphalt binder relative to the 200–300A (PG 52-34) asphalt binder, particularly the Saskatchewan Type 70 mix. The 10-year rutting performance of the Radisson SPS-9A test site was evaluated and the field rutting results concurred with the triaxial frequency sweep test results. The triaxial frequency sweep characterization employed in this study appears to adequately rank asphalt mixes with respect to field rutting performance.


2019 ◽  
Vol 5 (12) ◽  
pp. 2535-2553 ◽  
Author(s):  
Saif Al-din Majid Ismael ◽  
Mohammed Qadir Ismael

Durability of hot mix asphalt (HMA) against moisture damage is mostly related to asphalt-aggregate adhesion. The objective of this work is to find the effect of nanoclay with montmorillonite (MMT) on Marshall properties and moisture susceptibility of asphalt mixture. Two types of asphalt cement, AC(40-50) and AC(60-70) were modified with 2%, 4% and 6% of Iraqi nanoclay with montmorillonite. The Marshall properties, Tensile strength ratio(TSR) and Index of retained strength(ISR) were determined in this work. The total number of specimens was 216 and the optimum asphalt content was 4.91% and 5% for asphalt cement (40-50) and (60-70) respectively. The results showed that the modification of asphalt cement with MMT led to increase Marshall stability and the addition of 6% of MMT recorded the highest increase, where it increased by 26.35% and 22.26% foe asphalt cement(40-5) and(60-70) respectively. Also, the addition of MMT led to increase moisture resistance of asphalt mixture according to the increase in TSR and IRS. The addition of 4% and 6% of MMT recorded the highest increase in TSR and IRS for asphalt cement (40-50) and (60-70) respectively, where they increased by 11.8% and 17.5% respectively for asphalt cement (40-50) and by 10% and 18% respectively for asphalt cement (60-70).


2016 ◽  
Vol 2 (10) ◽  
pp. 538-545 ◽  
Author(s):  
Ramin Bayat ◽  
Siamak Talatahari

Engineers are constantly trying to improve the performance of the flexible pavements. The main surface distress types which cause maintenance and disruption are rutting and fatigue cracking. For solving these problems, many studies have been carried out until now, ranged from changing gradation to adding polymers and fibers to asphalt mixture. In this study, polypropylene additive was selected as fiber additive because of low costing and having good correlation with asphalt pavement. Three type of polypropylene additive in the length 6, 12 and 19 mm were selected and used at five different percentages in the asphalt concrete mixture. Asphalt specimens were analysed by Marshall Analysis and finally tested by Marshall Stability apparatus. Adding polypropylene increased Marshall Stability (38%), and decreased Flow (39%). These results show that polypropylene can be helpful for increasing pavement life.


Recently, prices of asphalt pavement materials have been increasing tremendously, which led to attempts to find alternative cheap materials. In addition, more concerns are directed to reserving natural resources and reducing environmental impacts of using virgin asphalt binders, thus more attention is focused on the use of recycled materials in pavement designs. Transportation agencies worldwide are incorporating reclaimed asphalt pavement (RAP) materials in new pavement designs. RAP was used for the first time in 1973, however, with low percentages due to the lack of understanding of its effect on the performance of asphalt mixes. Currently, higher percentages (e.g. >50%) are being utilized to reduce costs and natural resources and make use of demolished old asphalt pavements. The main concern of combining RAP in new asphalt mixes is how it will affect the resistance of these mixes to permanent deformation (rutting), fatigue cracks, and thermal cracks, which are the main distresses that affect the performance of asphalt mixes. Many studies were conducted to evaluate the effects of RAP on asphalt mixes, and all results showed that RAP increased the stiffness of asphalt mixes, thus improving rutting resistance at high temperature. On the other hand, results were in conflict with regard to fatigue and thermal cracking. Recently, the Department of Public Works and Services at Ras Al Khaimah, UAE started adopting RAP mixes in ongoing projects (e.g. Kadra-Shawka Road) with no clear guidelines, in hope of reducing costs and that these roads would have better performance. To address the concerns of the effects of RAP and to determine the correct RAP percentage for projects in Ras Al Khaimah, this study was initiated and as a first stage a literature review was conducted and presented in this article.


Polymers ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3802
Author(s):  
Stefano Marini ◽  
Michele Lanotte

Waste rubber from end-of-life tires has been proved to be an excellent source of polymeric material for paving applications. Over the years, however, the rubberized asphalt technology has never been used in ‘lean’ (low bitumen content) asphalt mixtures typically used in arid regions. This study offers an insight on the potential benefits and drawbacks resulting from this technology if applied in such ‘lean’ mixes. Results show that the ‘lean’ nature of those asphalt mixes eliminates the potential benefits given by the modified bitumen for rutting performance. Instead, the aggregates gradation plays a major role in the response of the materials, with gap-graded mixtures often outperforming those with a dense-graded gradation. On the contrary, fatigue cracking resistance is affected by the bitumen properties, and rubberized asphalt perform better than others. The performance-based analysis suggests that the current specifications tend to overachieve the goal of reducing permanent deformation while cracking becomes a major concern which can be solved by using rubberized asphalt. In the field, gap-graded asphalt with rubberized bitumen showed the best response in terms of skid resistance and noise reduction.


Sign in / Sign up

Export Citation Format

Share Document