scholarly journals New geodynamics: geosyncline plate tectonics

Author(s):  
D.G. Kushnir

For the first time, on the basis of the data set of the Taimyr geophysical site, the processes that cause vertical oscillatory movements of large blocks of the continental crust and largely determine its deep structure are confidently recorded. In this regard, the conceptual apparatus of plate tectonics is being expanded due to terms that were not originally used for it, previously used within the framework of geosyncline theory. Modern geodynamics combines concepts opposed in the past, thereby forming a conceptually new geosyncline plate tectonics. Under the new paradigm, the oil and gas prospects of an area are determined not so much by its confinement to a geostructure of any age, as by the current stage of the geosyncline cycle, characterized by subsidence, active sedimentation processes and formation of a sedimentary basin or, conversely, orogenesis and dominant erosion of sediments. Thus, one or another scenario will cause a different inflow of hydrocarbons from the generation area, which means that regional tectonic movements largely predetermine the realization of the hydrocarbon potential, making them one of the most important criteria for its assessment.

2020 ◽  
Vol 6 (3) ◽  
Author(s):  
Ralph A. Cantafio

When Colorado Democratic Governor Jared Polis approved Senate Bill 181, this new law significantly redirected the historical focus of Colorado oil and gas regulation. This provided a significant delegation of land use related authority to local government for the first time since the passage of this Act in 1951. This new law moved away from the traditional notion of statewide regulation based upon exclusive jurisdiction by the Colorado Oil and Gas Conservation Commission (“COGCC”). While this change of legislative focus is significant, this latest direction is probably a natural continuation of a general trend that has been emerging in Colorado since certain Supreme Court Opinions were announced in 1992, as explained later in this Article. As the State of Colorado has, among other things, grown in population, residential housing now significantly finds itself competing with oil and gas development in the same geographical areas, especially the suburbs of the “Front Range.” Simultaneously, the political sentiment of Colorado has trended into a more significantly Democratic direction from a historically Republican majority. The law as to the governance of the oil and gas industry has now changed as a result of the passing of SB 181—from fostering the development of oil and gas industry to a new paradigm requiring the weighing of interests, including environmental concerns. This Article provides a historic explanation to allow the reader to better understand how this transition has come about. That which is observed in Colorado might also be seen as a potential harbinger of future change that could be noted in other oil and gas states.


GEODYNAMICS ◽  
2011 ◽  
Vol 2(11)2011 (2(11)) ◽  
pp. 341-343
Author(s):  
P.M. Sheremeta ◽  
◽  
S.G. Slonytska ◽  
V. I. Tregubenko ◽  
Yu.M. Ladyzhenskyy ◽  
...  

In the paper the deep structure of the Carpathian region of Ukraine from the plate tectonics point of view is illustrated. According to geophysical research on regional sections the kimberlite formation of tectonomagmatic activation and seismofocal zone of Hercynian tectogenesis are found. Contrary to existing views the obtained data indicate that West European microplate came under the East European plate. In the light of the stated the prospects of oil-and-gas presence of the region are analysed.


2021 ◽  
pp. 1-11
Author(s):  
Velichka Traneva ◽  
Stoyan Tranev

Analysis of variance (ANOVA) is an important method in data analysis, which was developed by Fisher. There are situations when there is impreciseness in data In order to analyze such data, the aim of this paper is to introduce for the first time an intuitionistic fuzzy two-factor ANOVA (2-D IFANOVA) without replication as an extension of the classical ANOVA and the one-way IFANOVA for a case where the data are intuitionistic fuzzy rather than real numbers. The proposed approach employs the apparatus of intuitionistic fuzzy sets (IFSs) and index matrices (IMs). The paper also analyzes a unique set of data on daily ticket sales for a year in a multiplex of Cinema City Bulgaria, part of Cineworld PLC Group, applying the two-factor ANOVA and the proposed 2-D IFANOVA to study the influence of “ season ” and “ ticket price ” factors. A comparative analysis of the results, obtained after the application of ANOVA and 2-D IFANOVA over the real data set, is also presented.


2020 ◽  
Vol 12 (1) ◽  
pp. 307-323
Author(s):  
Qizhong Wang ◽  
Zhongquan Li ◽  
Yuan Yin ◽  
Shuang Yang ◽  
Wei Long ◽  
...  

AbstractThe Western Sichuan Plateau (WSP), located in the eastern margin of the Qinghai–Tibet Plateau, is the most strongly deformed region of the continental crust in China. Frequent tectonic movements shape the unique topography and landform of the WSP and have also produced abundant geological heritage resources. Based on the existing geological heritage survey data in Sichuan Province, the nearest index analysis method of employing a regional spatial point model was used to reveal the distribution rules and the genetic mechanism of typical geological relics in the WSP for the first time. Results indicate that the formation and distribution of geological relics in the WSP are generally controlled by tectonic movement and supplemented by the comprehensive action of external forces such as flowing water. Their distribution shows a condensed spatial distribution pattern and extends along the strike of a fault zone and river strike strip. Finally, based on the characteristics of geological relics in the WSP, some suggestions on the protection and development of regional geological relics were put forward.


2021 ◽  
pp. 193229682110098
Author(s):  
Jennifer Y. Zhang ◽  
Trisha Shang ◽  
Suneil K. Koliwad ◽  
David C. Klonoff

In this issue of JDST, Alva and colleagues present for the first time, development of a continuous ketone monitor (CKM) tested both in vitro and in humans. Their sensor measured betahydroxybutyrate (BHB) in interstitial fluid (ISF). The sensor was based on wired enzyme electrochemistry technology using BHB dehydrogenase. The sensor required only a single retrospective calibration without a need for further adjustments over 14 days. The device produced a linear response over the 0-8 mM range with good accuracy. This novel CKM could provide a new dimension of useful automatically collected information for managing diabetes. Passively collected ISF ketone information would be useful for predicting and managing ketoacidosis in patients with type 1 diabetes, as well as other states of abnormal ketonemia. Although additional studies of this CKM will be required to assess performance in intended patient populations and prospective factory calibration will be required to support real time measurements, this novel monitor has the potential to greatly improve outcomes for people with diabetes. In the future, a CKM might be integrated with a continuous glucose monitor in the same sensor platform.


2021 ◽  
Vol 9 (3) ◽  
pp. 258
Author(s):  
Alexey S. Egorov ◽  
Oleg M. Prischepa ◽  
Yury V. Nefedov ◽  
Vladimir A. Kontorovich ◽  
Ilya Y. Vinokurov

The evolutionary-genetic method, whereby modern sedimentary basins are interpreted as end-products of a long geological evolution of a system of conjugate palaeo-basins, enables the assessment of the petroleum potential of the Western sector of the Russian Arctic. Modern basins in this region contain relics of palaeo-basins of a certain tectonotype formed in varying geodynamic regimes. Petroleum potential estimates of the Western Arctic vary broadly—from 34.7 to more than 100 billion tons of oil equivalent with the share of liquid hydrocarbons from 5.3 to 13.4 billion tons of oil equivalent. At each stage of the development of palaeo-basins, favourable geological, geochemical and thermobaric conditions have emerged and determined the processes of oil and gas formation, migration, accumulation, and subsequent redistribution between different complexes. The most recent stage of basin formation is of crucial importance for the modern distribution of hydrocarbon accumulations. The primary evolutionary-genetic sequence associated with the oil and gas formation regime of a certain type is crucial for the assessment of petroleum potential. Tectonic schemes of individual crustal layers of the Western sector of the Russian Arctic have been compiled based on the interpretation of several seismic data sets. These schemes are accompanied by cross-sections of the Earth’s crust alongside reference geophysical profiles (geo-traverses). A tectonic scheme of the consolidated basement shows the location and nature of tectonic boundaries of cratons and platform plates with Grenvillian basement as well as Baikalian, Caledonian, Hercynian, and Early Cimmerian fold areas. Four groups of sedimentary basins are distinguished on the tectonic scheme of the platform cover according to the age of its formation: (1) Riphean-Mesozoic on the Early Precambrian basement; (2) Paleozoic-Cenozoic on the Baikalian and Grenvillian basements; (3) Late Paleozoic-Cenozoic on the Caledonian basement; (4) Mesozoic-Cenozoic, overlying a consolidated basement of different ages. Fragments of reference sections along geo-traverses illustrate features of the deep structure of the main geo-structures of the Arctic shelf and continental regions of polar Russia.


Electronics ◽  
2021 ◽  
Vol 10 (14) ◽  
pp. 1690
Author(s):  
Teague Tomesh ◽  
Pranav Gokhale ◽  
Eric R. Anschuetz ◽  
Frederic T. Chong

Many quantum algorithms for machine learning require access to classical data in superposition. However, for many natural data sets and algorithms, the overhead required to load the data set in superposition can erase any potential quantum speedup over classical algorithms. Recent work by Harrow introduces a new paradigm in hybrid quantum-classical computing to address this issue, relying on coresets to minimize the data loading overhead of quantum algorithms. We investigated using this paradigm to perform k-means clustering on near-term quantum computers, by casting it as a QAOA optimization instance over a small coreset. We used numerical simulations to compare the performance of this approach to classical k-means clustering. We were able to find data sets with which coresets work well relative to random sampling and where QAOA could potentially outperform standard k-means on a coreset. However, finding data sets where both coresets and QAOA work well—which is necessary for a quantum advantage over k-means on the entire data set—appears to be challenging.


1987 ◽  
Vol 65 (3) ◽  
pp. 691-707 ◽  
Author(s):  
A. F. L. Nemec ◽  
R. O. Brinkhurst

A data matrix of 23 generic or subgeneric taxa versus 24 characters and a shorter matrix of 15 characters were analyzed by means of ordination, cluster analyses, parsimony, and compatibility methods (the last two of which are phylogenetic tree reconstruction methods) and the results were compared inter alia and with traditional methods. Various measures of fit for evaluating the parsimony methods were employed. There were few compatible characters in the data set, and much homoplasy, but most analyses separated a group based on Stylaria from the rest of the family, which could then be separated into four groups, recognized here for the first time as tribes (Naidini, Derini, Pristinini, and Chaetogastrini). There was less consistency of results within these groups. Modern methods produced results that do not conflict with traditional groupings. The Jaccard coefficient minimizes the significance of symplesiomorphy and complete linkage avoids chaining effects and corresponds to actual similarities, unlike single or average linkage methods, respectively. Ordination complements cluster analysis. The Wagner parsimony method was superior to the less flexible Camin–Sokal approach and produced better measure of fit statistics. All of the aforementioned methods contain areas susceptible to subjective decisions but, nevertheless, they lead to a complete disclosure of both the methods used and the assumptions made, and facilitate objective hypothesis testing rather than the presentation of conflicting phylogenies based on the different, undisclosed premises of manual approaches.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Sandeep Kumar Dhanda ◽  
Sudheer Gupta ◽  
Pooja Vir ◽  
G. P. S. Raghava

The secretion of Interleukin-4 (IL4) is the characteristic of T-helper 2 responses. IL4 is a cytokine produced by CD4+ T cells in response to helminthes and other extracellular parasites. It has a critical role in guiding antibody class switching, hematopoiesis and inflammation, and the development of appropriate effector T-cell responses. In this study, it is the first time an attempt has been made to understand whether it is possible to predict IL4 inducing peptides. The data set used in this study comprises 904 experimentally validated IL4 inducing and 742 noninducing MHC class II binders. Our analysis revealed that certain types of residues are preferred at certain positions in IL4 inducing peptides. It was also observed that IL4 inducing and noninducing epitopes differ in compositional and motif pattern. Based on our analysis we developed classification models where the hybrid method of amino acid pairs and motif information performed the best with maximum accuracy of 75.76% and MCC of 0.51. These results indicate that it is possible to predict IL4 inducing peptides with reasonable precession. These models would be useful in designing the peptides that may induce desired Th2 response.


Sign in / Sign up

Export Citation Format

Share Document